Μια αναφορά στο «Christodoulou memory effect»

 ή αλλιώς «Christodoulou permanent displacement«

(updated)

 Για το φαινόμενο αυτό  – που δεν αναφέρεται σχεδόν καθόλου στην ελληνική βιβλιογραφία – διαβάζουμε στο βιβλίο του Γιώργου Λ. Ευαγγελόπουλου, “Μαθηματικά και Φυσική, μια ιδιαίτερη σχέση – Με αφορμή σκέψεις του Κορνήλιου Καστοριάδη”, εκδόσεις Ευρασία, 2010, σελ. 122-123 : (αξίζει να διαβαστεί και η άποψη του Θανάση Φωκά – ακαδημαϊκού και καθηγητή Mαθηματικών στο Κέμπριτζ – για τον Γ. Ευαγγελόπουλο:  ΕΔΩ)

«…Έτσι ο Χριστοδούλου οδηγήθηκε αργότερα στην εκπόνηση, από κοινού με τον Sergiu Kleinerman, του πολύ δύσκολου από μαθηματικής απόψεως έργου «The Global Nonlinear Stability of the Minkowski Space» (Princeton University Press, 1994) (δείτε ΕΔΩ ή ΕΔΩ)

Ο Δημήτριος Χριστοδούλου γεννήθηκε στην Αθήνα το 1953.  Ως μαθητής της Β’ Λυκείου έγινε δεκτός για πανεπιστημιακές σπουδές στο Πανεπιστήμιο του Πρίνστον. Στα 18 του χρόνια είχε πάρει μάστερ στη Φυσική και στα 20 διδακτορικό. Το 1972 γίνεται καθηγητής στο Πανεπιστήμιο Αθηνών και επισκέπτης ερευνητής στο CERN της Γενεύης. Το 1974 πήρε θέση επισκέπτη ερευνητή στο Διεθνές Κέντρο Θεωρητικής Φυσικής στην Τεργέστη και στο Ινστιτούτο Max Planck του Μονάχου. Η πορεία του είναι θριαμβική. Γίνεται μέλος του φημισμένου Ινστιτούτο Courant, του Πανεπιστημίου της Νέας Υόρκης. Διδάσκει σε διάφορα αμερικανικά πανεπιστήμια και επιστρέφει το 1988 στο Ινστιτούτο Courant, ως τακτικός καθηγητής. Το 1992 εκλέγεται τακτικός καθηγητής στο Μαθηματικό Τμήμα του Πανεπιστημίου του Πρίνστον και τον Ιούνιο του 1993 παίρνει το βραβείο MacArthur, που απονέμεται σε διεθνείς προσωπικότητες των επιστημών και των τεχνών. Σήμερα είναι επίλεκτο στέλεχος του ΕΤΗ, του σπουδαιότερου Πολυτεχνείου της Ευρώπης. Πέρυσι βραβεύθηκε με το σημαντικότερο διεθνώς βραβείο στα μαθηματικά, το βραβείο Shaw.

Τις κεντρικές ιδέες αυτού του βιβλίου περιγράφει ο Χριστοδούλου ως εξής: «Το ερέθισμα για ν’ ασχοληθώ με το συγκεκριμένο θέμα δόθηκε όπως προανέφερα, από τον Ehlers. Ήταν ένα πρόβλημα που μου ετέθη γύρω στο 1979, δηλαδή δέκα χρόνια προτού λυθεί, και πάνω στο οποίο άρχισα να εργάζομαι σοβαρά το 1984. Επομένως πρόκειται για προϊόν εργασίας πέντε ετών (1984-1989), κατά τα οποία ασχολιόμουν συνεχώς και αποκλειστικά με αυτό το πρόβλημα. Το βιβλίο είναι αρκετά ογκώδες, αριθμεί πάνω από 500 σελίδες, οι βασικές ιδέες του όμως είναι απλές. Δυο είναι οι κύριες ιδέες: η πρώτη αφορά τη σχέση της συμμετρίας με τους νόμους της διατήρησης. Στην περίπτωση της γενικής σχετικότητας αυτή η ιδέα παίρνει νέα μορφή. Το πρόβλημα ήταν πώς να εφαρμόσουμε εδώ αυτή την ιδέα, δεδομένου ότι σ’ έναν γενικό χωρόχρονο δεν υπάρχουν συμμετρίες. Εφόσον δεν υπάρχουν συμμετρίες, δεν μπορούμε να «κατασκευάσουμε» ποσότητες που διατηρούνται. Μπορούμε όμως να «κατασκευάσουμε» ποσότητες που η αύξησή τους θα βρίσκεται υπό έλεγχο. Η δεύτερη ιδέα αφορά στον τρόπο «κατασκευής» όχι συμμετριών, αλλά – για να χρησιμοποιήσουμε μαθηματικούς όρους – μιας ομάδας που θα δρα με ασυμπτωτικές ισομετρίες. Σε μια τέτοια αρκετά μεγάλη ομάδα, οι ποσότητες που αντιστοιχούν σ΄αυτήν, ναι μεν δεν διατηρούνται, πλην όμως η αύξησή τους τελεί υπό έλεγχο, διότι ο ρυθμός της φράσσεται από την ίδια την ποσότητα της οποίας μετρούμε την αύξηση.

Στη γεωμετρική κατασκευή των ασυμπτωτικών ισομετριών χρησιμοποιείται ένα «καθολικό αναλλοίωτο» (αναλλοίωτο του χωροχρόνου στο άπειρο), το οποίο είχα “βρει” το 1989». (από τη συνέντευξη του Χριστοδούλου στο Qunatum τεύχος Μαρτίου-Απριλίου 1995, σελ. 33-34).

Είναι εντυπωσιακό ότι από αυτό το καθαρώς μαθηματικό έργο των Χριστοδούλου-Kleinerman προέκυψε το αποκαλούμενο στη Φυσική «Christodoulou memory effect» ή «Christodoulou permanent displacement», που αφορά την επ’ άπειρον μη γραμμική φύση των βαρυτικών κυμάτων – γεγονός που αποτελεί ένα ακόμη εκπληκτικό παράδειγμα της «μυστηριώδους» σχέσης των Μαθηματικών με τη Φυσική….»

Στη συνέχεια παραθέτουμε ακόμη ένα μικρό σχετικό απόσπασμα από τη συνέντευξη του Δημήτρη Χριστοδούλου στον Γ. Ευαγγελόπουλο για το περιοδικό Quantum (τεύχος Μαρτίου-Απριλίου 1995, σελ. 34-35)
Ερ: Το 1991 δημοσιεύσατε στο μεγάλου κύρους επιστημονικό περιοδικό Physical Review Letters τη δυσκολότερη εργασία σας «Nonlinear nature of gravitation and gravitational-wave experiments», Phys. Rev. Lett. 67, 1486–1489 (1991) 
Η εργασία αυτή μας αποκάλυψε μια εξαιρετικά ενδιαφέρουσα ιδιότητα των βαρυτικών κυμάτων που διευκολύνει την προσπάθειά μας να τα ανιχνεύσουμε. Αξίζει να αναφερθεί ότι ο Thorne ισχυρίζεται πως η εργασία σας, πρώτον μας βοηθάει να καταλάβουμε καλύτερα τη φύση της βαρύτητας, και δεύτερον, έχει συγκεκριμένα πρακτικά αποτελέσματα. Θα μπορούσατε να μας εξηγήσετε τι ακριβώς εννοεί ο Thorne;
Aπ: Η εργασία μου φαίνεται δύσκολη επειδή είναι πυκνογραμμένη, και τούτο διότι το εν λόγω περιοδικό δεν παραχωρεί περισσότερες από τέσσερις σελίδες για κάθε εργασία˙ επιπλέον, βασίζεται στο βιβλίο που γράψαμε με τον Kleinerman και επομένως συμπυκνώνει θέματα που η ανάπτυξή τους απαιτεί πολύ περισσότερες σελίδες. Το θέμα της είναι ότι η σχετικιστική βαρύτητα έχει μια μη γραμμική υπόσταση, η οποία εμφανίζεται ακόμη και σε άπειρες αποστάσεις από την πηγή των κυμάτων, παρότι το πλάτος των κυμάτων φθίνει αντιστρόφως ανάλογα με την απόσταση.
Τούτο συμβαίνει επειδή υπάρχει ένα μη γραμμικό μέρος του βαρυτικού κύματος, το οποίο φθίνει ακριβώς με τον ίδιο νόμο, και άρα ο λόγος του μη γραμμικού προς το γραμμικό είναι ανεξάρτητος της αποστάσεως από την πηγή.
Βεβαίως γνωρίζουμε από την αρχή ότι η γενική θεωρία της σχετικότητας είναι μη γραμμική θεωρία για τη βαρύτητα, και αυτό οφείλεται στο ότι ο τανυστής καμπυλότητας του Riemann αποτελεί μια μη γραμμική έκφραση της μετρικής. Εγώ λοιπόν απέδειξα ότι, αντιθέτως, κάτι τέτοιο δεν συμβαίνει, διότι ενώ οι εξισώσεις απλοποιούνται και δεν έχουν όλη τη μη γραμμικότητα που έχουν όταν βρισκόμαστε κοντά στην πηγή, δεν απλοποιούνται σε τέτοιο βαθμό ώστε να γίνουν απολύτως γραμμικές! Δηλαδή παραμένει μια γραμμικότητα ακόμη και στο άπειρο. Σημαντικό είναι επίσης το γεγονός ότι η ύπαρξη αυτής της μη γραμμικότητας της βαρύτητας έχει την εξής συνέπεια: είναι γνωστό ότι αν πάνω στην επιφάνεια της Γης έχουμε τρία εκκρεμή, οι σφαίρες τους κινούνται ελεύθερα στο οριζόντιο επίπεδο, αφού στο επίπεδο αυτό δεν επενεργούν δυνάμεις˙ αν το πείραμα γίνει στο διάστημα, τότε θα κινηθούν ελεύθερα και προς την τρίτη, την κατακόρυφη διεύθυνση.
Μέχρι τώρα πίστευαν πως, αν «έρθει» ένα κύμα βαρύτητας οι δυο από τις τρεις σφαίρες – παρατηρούμε πάντοτε τις σχετικές κινήσεις των δυο ως προς την τρίτη – θα εκτελέσουν μια κίνηση, η στιγμιαία επιτάχυνση στην οποία έχει να κάνει με το μέγεθος της καμπυλότητας του χωρόχρονου στην περιοχή όπου βρίσκονται οι σφαίρες, αλλά ότι, μόλις «περάσει» το κύμα, ή, πιο σωστά, η κάθε ταλάντωση, οι σφαίρες θα επιστρέψουν στις αρχικές τους θέσεις. Έτσι λέει η γραμμική θεωρία.
Αυτό όμως καθιστά εξαιρετικά δύσκολο το να μετρήσει κανείς τη μετατόπιση αυτή, η οποία είναι πολύ μικρή, επειδή οι πηγές των κυμάτων βρίσκονται σε πολύ μεγάλη απόσταση από τη Γη. Δηλαδή, δεν είναι μικρή επειδή είναι από τη φύση της μικρή˙ αν η πηγή ήταν εδώ, κοντά μας, η μετατόπιση των σφαιρών θα ήταν μεγάλη.
Όπως τόνισα και πριν, η πηγή κυμάτων είναι η συγχώνευση δυο αστέρων νετρονίων ή δυο μελανών οπών, φαινόμενο το οποίο συμβαίνει μια φορά το χρόνο, και μόνο αν εξετάσουμε μια σφαιρική περιοχή του σύμπαντος με κέντρο τη Γη που να έχει ακτίνα 100.000.000 ετών φωτός. Επομένως, όταν αυτά τα κύματα άρχιζαν το ταξίδι τους προς εμάς είχαν μεγάλο πλάτος, αλλά αφού διέσχισαν 100.000.000 έτη φωτός, το πλάτος τους έγινε πάρα πολύ μικρό, δηλαδή της τάξης του 10-21. Η μετατόπιση των σφαιρών των εκκρεμών όχι μόνο είναι πολύ μικρή, αλλά επιπλέον διαρκεί μόνο όσο διαρκεί η περίοδος του κύματος, η οποία είναι η μισή από την περίοδο περιφοράς των αστέρων, με άλλα λόγια , περίπου μισό χιλιοστό του δευτερολέπτου. Άρα, στο μισό χιλιοστό του δευτερολέπτου πρέπει να μετρηθεί μια απόσταση με ακρίβεια 10-21. Φαίνεται σχεδόν αδύνατον. Όμως η μη γραμμικότητα της βαρύτητας, η οποία υπάρχει και σε άπειρες αποστάσεις, δίνει το εξής αποτέλεσμα: αφού περάσει το κύμα, οι σφαίρες επανέρχονται μεν σε ηρεμία σε σχέση με την κεντρική σφαίρα, αλλά όχι στις αρχικές τους θέσεις. Υπάρχει δηλαδή μια μόνιμη μετατόπιση, μια μετατόπιση η οποία παραμένει και είναι της ίδιας τάξεως μεγέθους με τη μέγιστη στιγμιαία μετατόπιση των σφαιρών. Αυτή η διαπίστωση έχει τις εξής δυο συνέπειες:
Πρώτον, ίσως προσφέρει νέες δυνατότητες για την ανίχνευση των βαρυτικών κυμάτων στην περίπτωση που μπορούμε να έχουμε ένα σύστημα μαζών οι οποίες να παραμένουν ανεπηρέαστες από σεισμικούς θορύβους για αρκετό διάστημα, ώστε να μπορούμε να εκμεταλλευτούμε τη αυτή τη μόνιμη μετατόπιση.
Δεύτερον από θεωρητική πλευρά είναι ενδιαφέρον το γεγονός ότι ο λόγος της μόνιμης μετατόπισης προς τη μέγιστη στιγμιαία είναι σχεδόν 1, άσχετα με το πόσο σχετικιστικό είναι το σύστημα των διπλών αστέρων ή των πολλαπλών αστέρων που αποτελούν την πηγή των κυμάτων. Δηλαδή ακόμα και αν έχουμε ένα σύστημα λευκών νάνων, αντί αστέρων νετρονίων ή μελανών οπών, ισχύει το ίδιο. Το μόνο που διαφέρει είναι ο χρόνος ο οποίος χρειάζεται για να ολοκληρωθεί αυτή η μόνιμη μετατόπιση. Σ’ ένα σύστημα δυο αστέρων νετρονίων ο εν λόγω χρόνος είναι ένα πολύ μικρό κλάσμα του δευτερολέπτου, αλλά σ’ ένα σύστημα λευκών νάνων είναι χιλιάδες χρόνια. Και σ’ αυτή την περίπτωση από πρακτική άποψη είναι αδύνατο να έχουμε ένα σύστημα μαζών το οποίο θα είναι απομονωμένο από σεισμικές δονήσεις επί δεκάδες χιλιάδες χρόνια. Στη μελέτη αυτού του φαινομένου οδηγήθηκα ως εξής: Είχα βρει το καθολικό αναλλοίωτο για το οποίο σας μίλησα στην προηγούμενη ερώτηση, αλλά δεν γνώριζα τη φυσική του ερμηνεία. Την τελευταία την αντιλήφθηκα όταν, διαβάζοντας τυχαία για το σχεδιαζόμενο πείραμα LIGO, διαπίστωσα ότι οι συντάκτες του άρθρου σκέπτονται στα πλαίσια της γραμμικής θεωρίας(…..)

Για περισσότερες λεπτομέρειες βλέπε: Γιώργος Λ. Ευαγγελόπουλος, “Μαθηματικά και Φυσική, μια ιδιαίτερη σχέση – Με αφορμή σκέψεις του Κορνήλιου Καστοριάδη”, εκδόσεις Ευρασία, 2010 και στη συνέντευξη που έδωσε ο Δημήτριος Χριστοδούλου στον Γ. Ευαγγελόπουλο: περιοδικό Qunatum τεύχος Μαρτίου-Απριλίου 1995

Κip Thorne «Gravitational-wave bursts with memory: The Christodoulou effect», Physical Review D, 45 (2), 1992, σελ. 520-524 http://authors.library.caltech.edu/7126/1/THOprd92.pdf

Στην εργασία αυτή ο Κip Thorne εξηγεί στους φυσικούς την τετρασέλιδη – μαθηματικώς πυκνή και δύσκολη – εργασία του Χριστοδούλου με τίτλο «Nonlinear nature of gravitation and gravitational-wave experiments», Phys. Rev. Lett. 67, 1486–1489 (1991) http://prl.aps.org/abstract/PRL/v67/i12/p1486_1

που στηρίζεται στο προαναφερθέν βιβλίο των Χριστοδούλου και Kleinerman.

Μάλιστα, οι πιο πρόσφατες εξελίξεις όσον αφορά στο «Christodoulou effect» περιγράφονται στις ακόλουθες 4 εργασίες του Mark Favata

«Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes» http://arxiv.org/abs/0811.3451

«Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries» http://arxiv.org/abs/0812.0069

«Nonlinear gravitational-wave memory from binary black hole mergers» http://arxiv.org/abs/0902.3660

και «The gravitational-wave memory effect» http://arxiv.org/abs/1003.3486

Διαβάστε επίσης:
Η γέννηση της θερμοδυναμικής των μαύρων τρυπών

The Formation of Black Holes in General Relativity



Κατηγορίες:ΜΑΥΡΕΣ ΤΡΥΠΕΣ, ΣΧΕΤΙΚΟΤΗΤΑ

Ετικέτες:

6 replies

  1. Ευχαριστώ, είναι τιμητική για μένα η αναφορά εκείνου του αποσπάσματος του βιβλίου μου, «Μαθματικά και Φυσική, μια ιδιαίτερη σχέση», στο οποίο γίνεται λόγος για το «Christodoulou memory effect». Πάντως, για να μην καταχρώμαι του χώρου σας, επιτρέψτε μου μόνον δύο σύντομα σχόλια: 1) H πυκνότητα και η δυσκολία της μαθηματικής εργασίας του Χριστοδούλου, «Nonlinear nature of gravitation and gravitational-wave experiments», Phys. Rev. Lett. 67, 1486–1489 (1991) -παρά την παρουσίασή της από τον Thorne, με τρόπο πιο κατανοητό στους φυσικούς, στη δημοσίευσή του, «Gravitational-wave bursts with memory: The Christodoulou effect», Physical Review D, 45 (2), 1992, σελ. 520-524-«δυσχέρανε», για αρκετά χρόνια, τους φυσικούς να αντιληφθούν την σημασία της για την επιστήμη τους. Τα πράγματα έχουν αλλάξει τα τελευταία χρόνια, καθώς, πέρα από τις προαναφερθείσες εργασίες του Mark Favata, υπάρχουν διάφοροι φυσικοί που εργάζονται πάνω σ’ αυτήν. Απαιτείται, πάντως, η παραπάνω μελέτη του Χριστοδούλου να παρουσιαστεί ακόμη πιο αναλυτικά στους φυσικούς, από έναν μαθηματικό φυσικό της δικής του κλάσης ή από ικανούς προς τούτο μαθηματικούς (σχετική παρότρυνση έκανε, πρόσφατα, ο διάσημος γεωμέτρης Shing-Tung Yau σε νεαρούς συνεργάτες του στο Harvard), διότι μόνον έτσι θα κατανοηθούν οι θεωρητικές της προκείμενες και θα σχεδιαστούν ορθά τα σχετικά πειράματα για τον έλεγχό της, και 2) Μια πρώτη περιγραφή, σε απλή γλώσσα, του τι σημαίνει το «Christodoulou memory effect», δίνεται από τον ίδιο τον Χριστοδούλου στην συνέντευξη που μου παραχώρησε στο Quantum, τεύχος Μαρτίου-Απριλίου 1995, σελ. 34-35.

    • … έχω προσθέσει επιπλέον ένα μικρό μέρος από την συνέντευξη Χριστοδούλου, σελ. 34-35.
      (Πάντως παρότι έχουν περάσει 17 χρόνια από τότε, η συνέντευξη περιέχει πολύ ενδιαφέροντα στοιχεία και νομίζω πως αξίζει να δημοσιευθεί ολόκληρη)

  2. Ευχαριστώ για τα καλά λόγια για την παλαιά αυτή συνέντευξη στο Quantum, καθώς και για την παράθεση του αποσπάσματός της που αφορά στο Christodoulou memory effect. Επειδή, σε προηγούμενο σχόλιό μου, ανέφερα το ενδιαφέρον του Yau για το Christodoulou memory effect,
    κι επειδή πρόκειται για εργασία του Απριλίου του 2012 (μεταγενέστερη δηλαδή της έκδοσης του βιβλίου μου, «Μαθηματικά και Φυσική, μια ιδιαίτερη σχέση – Με αφορμή σκέψεις του Κορνήλιου
    Καστοριάδη», εκδόσεις Ευρασία, 2010, στο οποίο αναφέρω τις σχετικές εργασίες του Mark Favata), επιτρέψτε μου να παραθέσω, για κάθε ενδιαφερόμενο, την ακόλουθη εργασία του Yau και δύο συνεργατών του, προκειμένου να είμαστε updated: http://arxiv.org/pdf/1110.0410.pdf .

    To abstract της εργασίας αυτής έχει ως εξής: «Gravitational waves are predicted by the general theory of relativity. It hasbeen shown that gravitational waves have a nonlinear memory, displacing test masses permanently. This is called the Christodoulou memory. We proved that
    the electromagnetic field contributes at highest order to the nonlinear memory effect
    of gravitational waves, enlarging the permanent displacement of test masses.
    In experiments like LISA or LIGO which measure distances of test masses, the
    Christodoulou memory will manifest itself as a permanent displacement of these
    objects. It has been suggested to detect the Christodoulou memory effect using
    radio telescopes investigating small changes in pulsar’s pulse arrival times. The
    latter experiments are based on present-day technology and measure changes in
    frequency. In the present paper, we study the electromagnetic Christodoulou
    memory effect and compute it for binary neutron star mergers. These are typical
    sources of gravitational radiation. During these processes, not only mass and
    momenta are radiated away in form of gravitational waves, but also very strong
    magnetic fields are produced and radiated away. Moreover, a large portion of
    the energy is carried away by neutrinos. We give constraints on the conditions,
    where the energy transported by electromagnetic radiation is of similar or slightly
    higher order than the energy radiated in gravitational waves or in form of neutrinos.
    We nd that for coalescing neutron stars, large magnetic elds magnify
    the Christodoulou memory as long as the gaseous environment is suciently
    rare ed. Thus the observed effect on test masses of a laser interferometer gravitational
    wave detector will be enlarged by the contribution of the electromagnetic
    field. Therefore, the present results are important for the planned experiments.
    Looking at the null asymptotics of spacetimes, which are solutions of the Einstein-
    Maxwell equations, we derive the electromagnetic Christodoulou memory e ect.
    We obtain an exact solution of the full nonlinear problem, no approximations
    were used. Moreover, our results allow to answer astrophysical questions, as the
    knowledge about the amount of energy radiated away in a neutron star binary
    merger enables us to gain information about the source of the gravitational waves».

  3. physicsgg, με την ευκαιρία, θέλω να σε συγχαρώ και εγώ για την σειρά των άρθρων που έχεις ανεβάσει σχετικά με τον Χριστοδούλου. Μπράβο, πολύ καλή δουλειά.

  4. Παιδιά, τυχαίνει να έχω όλη την σειρά από τα QUANTUM που κυκλοφόρησαν. Εντόπισα το άρθρο και εάν θέλετε το «σκανάρω» και το στέλνω για ανάρτηση. Γιάννης.

Σχολιάστε

Εισάγετε τα παρακάτω στοιχεία ή επιλέξτε ένα εικονίδιο για να συνδεθείτε:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση /  Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση /  Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση /  Αλλαγή )

Σύνδεση με %s

Ο ιστότοπος χρησιμοποιεί το Akismet για την εξάλειψη των ανεπιθύμητων σχολίων. Μάθετε πως επεξεργάζονται τα δεδομένα των σχολίων σας.

Αρέσει σε %d bloggers: