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PREFACE

The course in advanced calculus contained in this book has for
many years been given by the author to students in the Massa-
chusetts Institute of Technology. The choice of the subject matter
and the arrangement of the material are the result of the expe-
rience thus gained. The students to whom the course has been
given have been chiefly interested in the applications of the calculus
and have felt the need of a more extensive knowledge than that
gained in the elementary courses, but they have not been prima-
rily concerned with theoretical questions. Hence there is no
attempt to make this course one in analysis. However, some
knowledge of theory is certainly necessary if correct use is to be
made -of the science; therefore the author has endeavored to in-
froduce the students to theoretical questions and possibly to incite
in some a desire for more thorough study. As an example of the
method used, a proof of the existence of the definite integral in cne
variable has been given; for the multiple integral the proof has
been omitted and simply the result stated. The stiadent who has
mastered the simpler case is in a position to read the more difficult
case in easily accessible texts.

Existence proofs have also been given for the simpler cases of
implicit functions and of differential equations. In these proofs
the author has preferred to make the assumption that the func-
tions involved ‘may be expanded into Taylor series. This, of
course, restricts the'proof ; but the somewhat immature student
gets a clearer idea of the meaning of the theorems when he sees
an actual series as the solution. The more absiract concept of
a function may well come later. Furthermore, the student is
likely to apply his results only to functions which can be expanded
into series. .

" .Because of this constant use of the power scries that subject is
taken up first, after certain introductory maiter. Here again, fol-
lowing the line of simplicity, the author has not discussed series in
general. The gain in concreteness for the student justifies this, but
the teacher who desires to discuss series of a more general type

may do so with the aid of the exercises given for the student.
iij ’



PREFACE

The Fourier series are introduced later as tools for solving certain
partial differential equations, but no attempt has been made to
develop their theory. |

The subjects treated in the book may be most easily seen by
examining the table of contents. Experience has shown that the
book may be covered in a year’s course.

FREDERICK 8. WOODS

NOTE FOR THE 1932 PRINTING. In this impression of the book certain improvements
have been made. In particular, Osgood’s theorem has been inserted in Chapter I, the
discuseion of uniform convergence in Chapter II has been improved, and the treatment
of the plane in Chapter V has been changed.

PREFACE TO THE NEW EDITION

In this edition additional exercises have been inserted at the
end of most chapters. Also, in Chapter VI, certain proofs have
been made more rigorous; namely, that for the existence of the”
definite integral and that for the possibility of differentiating under
the integral sign a definite integral with upper limit infinity. All
the typographical errors that have been discovered have been

corrected.
FREDERICK S. WOODS
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ADVANCED CALCULUS

CHAPTER 1

PRELIMINARY

1. Functions. A quantity y 18 said to be a function of a quan-~
tity x if the value of y 18 determined when the value of x is given.

Elementary examples are the familiar algebraic, trigonometric,
logarithmic, and exponential functions by means of which y is
explicitly given in terms of x. Such explicit formulation, how-
ever, is not necessary to the idea of a function.

For example, y may be the number of cents of postage on a
letter and x the number of ounces in its weight, or ¥ may be defined
as the largest prime number which is smaller than any number
x, or y may be defined as equal to 0 if z is a rational number and
equal to 1 if z is an irrational number.

* It should be noticed, moreover, that even when an explicit
formulation in elementary functions is possible, ¥ need not be
defined by the same formula for all values of zx.

For example, consider a spherical shell of inner radius ¢ and
outer radius b composed of matter of density p. Let x be the dis-
tance of a point from the center of the shell and y the gravita-
tional potential due to the shell. Then y is a function of z with
the following formulation :

y=2mp(*—a?) when z = q,

2
y=21rp(b2—£3->——é£a3 when a=2x =0, (1’)

d7p b —a® when =z >b.

y= 3z
So we may at pleasure build up an arbitrary function of z.
For example, let ¥ = f(x), where
f@x)=%x> when 0 <2z <1,
fxy=3% when z=1, 2

fxy=232z+1 when z >1,
1
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We shall say. that values of x which lie between a and b deter-
mine an interval (a, b). The interval may or may not include the
values a and b, according to the con- -
text. In general, however, the inter-
vals (@, b) will mean the values of x
defined by the statement ¢ = x =b.

The student is suppesed to be fa-
miliar with the representation of a
function by a graph. Such a repre-
sentation is usually possible for the ¢ a
functions we shall handle in this book, " Fe. 1
although it is impossible for the func-
tion mentioned in the third example of this section. The in-
terval (a, b) appears in the graph as the portion of the axis of =
between-x = a@ and z = b, and it will be - v
convenient to speak of a point of the
interval, meaning a value of z in the
interval. Then r=a and z=05b are
the end-points of the interval. As men-
tioned above, the interval may or may
not have end-points.

The graph of the potential functlon in
(1) is the curve of Fig. 1. The graph has ©
no breaks and the function is continuous FIG. 2
(§ 2), but the character of the curve
and of the function is different in the three intervals considered.

The graph of the function in (2) is the curve of Fig. 2. This
graph has a break at the point for which x = 1.

2. Continuity. A function f(x) is continuous when x = a for which
f(a) is defined if

(7] S

M

I}fﬁl [fla+h) —f@]=0, @
or, otherwise expressed, if
%irgl fla+ k) = f(a), )

where in either formula the limit is independent of the manner in
which & approaches 0. '

Since k is an increment added to @, and f(a + %) — f(a) is the
corresponding increment of f(a), we may express this deﬁmtlon
as follows:

A function of x 1s continuous for a given value of x if the increment
of the function approaches zero as the increment of x approaches zero.
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A more cumbersome definition, but one which brings out the
full meaning of equation (1), is as follows: f(x) ts continuous for
x = a when if € 18 any assigned positive quantity, mo matter how
small, it 1s possible to determine another positive quantity & so-that
the difference in absolute value between f(a + h) and f(a) shall be
less than € for all values of h numerically less than 8; that is,

|fla+h)—fla)| <e when |h]| <6é. (8)

Graphically, € having been given, there can be found an interval
(@+h, a—h) in which | f(x) — f(a)| <e at all points of the
interval.

Consider the function defined by the Y
equations 10
. 10
Jx) = : when =0,
1+ el B e
f(0)=0, “)
the graph of which is shown in Fig. 8. X
Here f(0+ %) —f(0) when & ap- 0
proaches zero through positive values, Fc. 3

and f(0 -+ &) — 10 £ f(0) when h ap-
proaches zero through negative values. Hence the function is
not continuous when x =0. There is no interval (— &, 2) in which
| f(x) — f(0) | < e. Furthermore, while v
the definition of f(0) in (4) is arbi-
trary, it is not possible to define f(0)
so that the function is continuous.

It is to be noticed that f(x) is not
continuous for z = a if f(a) is “‘infi- o

nite.”” This expression means that
fa +h) can be made numerically
larger than any assigned positive ' :

quantity by taking % sufficiently small;
or, more precisely, if M is a positive
number no matter how large, then a
number & can be determined so that
| flta+h)| > M for | k| < 8. The definition of continuity cannot
then be satisfied for z = a. 1

For example, the functions - (Fig. 4) and

Fic. 4

1 .

o (Fig.5) are each
discontinuous for z = 0. as is shown by the break in e:ch of the
curves represeanting the functions.
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The following theorems are of fundamental importance in
handling continuous functions : v

L JIf f(x) s continuous at all points of
an interval (a, b), it 18 possible to find a
positive numbgr & such that in all subin-
tervals of (a, b) less than & the absolute
value of the differemnce between any two
values of f(x) is less than e when €18 a
posttive quaniity given in advance.

‘We shall not give a formal proof. It
is not difficult to see that if these theo-
rems were not true, definition (3) for
continuity must fail for at least one
point of (a, b). Because of the property 0 X
stated in the theorem, f(x) is said to be
uniformly continuous in (a, b).

F16. 5

I If f(x) is continuous for all values of x between a and b inclu~
y swe, if f(a) = A and f(b) = B, and if N 18 any valug beiween A

and B, then f(£) = N for at least one value of & between a and.b.
B
Y
N
B ‘ i
- N H ]
Al LM T
| x BEa
H ) 1
Ol a § b o= 5 X
Fia. 6 F16. 7

II1. If f(x) %8 continuous for all values of x between a and b tnclu-
sive, then f(x) has a largest value M
for at least one value of x between a Y
ond b and a smallest value m for at
least some other value of = between a
and b.

These theorems seem to be inherent
in the very nature of continuity and
are graphically evident from Figs. m
6,7, and 8. As a matter of fact, how- gI—% X
ever, they are not self-evident and Fic. 8
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are capable of rigorous proof. These proofs lie outside the range
of this book and will not be given here.

The difference between the maximum and minimum values of
f(x) in the interval (a, b) is called the oscillation of f(x). We can
say from I,

IV. If f(x) 4s continuous tn (a, b), it s possible to find a posstive
number 6 so thai in every interval in (a, b) less than & the oscillation
of f(x) s less than e.

8. The derivative. A function f(x) is said to have a derivative for
2z = a if the expression fla+ h) - f(@)

T h
approaches a limit as & approaches zero in any manner whatever.
This limit is called the derivative for x = ¢ and is denoted by

f'(a). We write _
Lim W = f'(a). 2

€8]

h-0

In order that the derivative should exist it is necessary that f(x)
should be continuous when z = a, for otherwise the fraction (1)
would not approach a limit. This condition is not sufficient, as
may be seen by considering the function defined by the equations

f(x) = x sin g when 2z #£0,
f (0).=

As x — 0, sin :;-r oscillates infinitely often between 4 1 and — 1,

&

. T N v .
but zsin —— (0. Hence the function is continuousg for z = 0.
x

Using this function in the fraction (1) with a =0, we have

. T
h sin 5 -0 Sm_
R ok
and sin il does not approach a limit as # — 0. Hence the func-

h
tion has no derivative when z = 0.
In 1872 Weierstrass gave the explicit statement of a function

which has for all values of z the property which % sm 7 has for

z =0, so that it is known now that a continuous functlon does
not necessarily possess a derivative. Hence when a new function
appears in analysis it is necessary to inquire first whether it is



6 PRELIMINARY

continuous and, secondly, whether it has a derivative. It is
only functions which possess these two properties that are of
interest in this book.

We have discussed the derivative of f(z) for a value a of 2. If
f(z) has a derivative at each point of an interval, there is thus
defined a new function f’(x) by the formula

» f@+h) —flx)
fim) = {,‘F h

4)

Similarly, we define f'/(x) as the derivative of f'(x) or the second
derivative of f{x), f//(x) as the derivative of f(x), and so on.

It is assurned from this point that the student is familiar with
the elemeniary process of differentiation. The proof of these ele-
mentary processes. involves implicitly the proof of the continuity
of the function and the existence of the derivative. The student
is also assumed to be familiar with the fact that if a function is
represented by a graph the derivative gives the slepe of the tan-
gent line to the graph.

The graph of the function

. T
= sin —
Y x

is given in Vig. 9 for positive values of z. For negative values of
« the curve is reflected on the line OY. Tt is of course impossible
1o draw the curve in the close v
neighborhood of the point U ; but S
it is clear that if O be joined to /'
any other point P of the curve,
the line OF oscillates through an
angle of 94°. The curve there-
fore has no tangent line at .

Th> Weiarstrass function men-
tioned above is represented by a
curve which has no breaks, but
has no tangent (that is, no definite
direction) at any point.

These examples illustrate the
fact that a graph is at best merely
a rough way to represent z function, and that conclusions drawn
merely from the graph may be erroneous. The graphs are helpful
in understanding or formulating a thecrem, but an analytie proof
is always neressary for rigor.

Fi1G. 9
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4. Composite functions. Let y = f(x) be a function of x and let

z = ¢(t). Then, by definition of a function y = F(t). Let{be given
an increment & and let the corresponding increment of x be £.
Then k= (+h) — ).
if ¢(t) is a continuous function of {, k— 0 as h — 0. Now

F@t) =y =f(z),

F(t+h) = f(x + k),
sinoe k and k are corresponding increments of ¢ and x. Therefore

Fi+h) — F(t) = flx + k) — f(x) ;

whence I;il})l [Fit+h) — Fii)l= I;Ugl [f{x+ k) — f(x).

Therefore, if f(z) is a continuous function,
%ix? [Fit+h)— F()]=0.

Hence if ¥ is a continuous function of x and z is a continucus
function of ¢, then y is a continuous function of ¢.
Let us now form the quotients

Fi+h) —F@O) _f@+k —f@)

h h ,
_fa+ k) —f@) bR — o)
- k h ’
whence, by § 3, on taking the limit,
F'(t) = f'(x) - 9" (). 1

5. Rolle’s theorem. If f(a)=0, and f(b)=0, then there is some value
& between a and b for which f'(£) = 0, provided f(x) is continuous in
the interval a = x = b and has a dertva- Y
tive for all values of x between o and b.

By theorem III, §2, f(x) has a ]
maximum M and a minimum m in i "
the interval (e, ). If both M and E
m are zero, f(x) is always zero, its !
derivative is zero (by (2), §3), and 0} @ £ b
the theorem is proved. Fie. 10

Suppose that M is not zero, as in Fig. 10, and let f(§) = M.
Then fE+h)—1(5)
fE+m —5E)

h

is negative. Hence
a
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,is positive when k is negative, and is negative when % is positive.
But, by hypothesis,
ub, by AYPOKIESIS, - f(& + ) — £(§)

h

approaches a limit f/(£), which is independent of the sign of h.
Hence £8) =

Again if M =0 but m < 0, as in Fig. 11, the same argument
applies. v

The student should notice that the
condition that f(x) should have a deriva-
tive rules out such graphs as shown in
Figs. 12 and 13, for in neither case is
there a derivative in the strict sense of _
the definition when x = ¢. It is true that 5 & ft b x
in Fig. 12 we may speak of a left-hand W
derivative and a right-hand derivative, :
but in so doing we modify the defini- Fc. 11
tion by first restricting & to negative ;
values and afterwards restricting 2 to positive values. In Fig. 13
fe+h) — fe)
h

we may write f'(c) = o, but again the limit of
does not exist in the sense of having a definite value.

.
Y v

Q-_-__---_--
Y

FiG. 12 Fic. 13

6. Theorem of the mean. I. If f(x) ¢s continuous in the interval
a = x = b.and has a derivative between x = a and x = b, then

: f@®) — f(a) = (b — a)f' (&),
where a < £ < b.
Graphically the theorem is very obvious. In Fig. 14, f(a) =

/6) = BQ, b~a= 4B, (b ~ f@ = CQ, and L0=L@ _ ffé
the slope of the chord PQ. The:slope of the tangent when z = §
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is f'(§). The theorem asserts that there is a point R for which
the tangent is parallel to the chord.
To prove the theorem analytically construct the auxiliary

function
F(x) =f(z) — f(a) — (x — )ﬂb) f(a)

Then
F(x+h) — F(x) = f(x + h) — f(x) — h

Then, if |f(x+ k) — f(x)|]— 0 as h— 0, so does |F(x+ h)
— F(x)|— 0, and v Q

Now F(a) =0 and F(b) =0,
as is seen by direct substitu-
tion. Hence, by Rolle’s theorem,

f(b) — f(a)
b—a

G

L S B

F'(§) = 0 for some £ between a P - ¢
and b. Thatis, s i
JRUSNC) :
ri =12 (@<t<b) Fio. 14
From this it follows at once that
f() =f(a) + (b —a)f'(§), (a <&<b) 1

which is the theorem to be proved.
In (1) we may write £ = a + 0(b — a), where 8 is an unknown
proper fraction, and have

f®)=f@)+ (®—a)fla+060b—0)] 0O<O<1) (2

Still another form of the same result may be obtained by placing
b=a-+Fhin (2).

Then fla+h) = f(a) + hf'(la+6h). (0<8<1) 3)
Two consequences of this theorem are as follows:

II. If the dertvative of a function is zero for all values of x in an
tnterval, the function ts a constant in that interval.

In formula (1) replace b by any value of  between a and b and
wehave  fq) = f(a) + @ — A)f (}). (8 <£<2)
But, by hypothesis, f'(¢§) = 0, hence
f@) =f(a),

as was to be proved.
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IIL. [f two functions have the same derivarive in an interval (a, b),
they differ by an additive constant.
Let f(x) and ¢(z) be two functions such that
(@) = ¢'(2),

and let F(z) = f(zx) — ¢ ().
Then F(x)=f(z) —¢' () =0
whence, by ], F{y = C.
That is, f(x) = o(x) + C.

This theorem has its important application to the process of
integration, with which the student is assumed to be familiar.

TFor let J’f(x)dx

represent the function whose derivative is f(x). Then if F(x) is
any on¢ function satisfying this condition, the most general fuac-
tion is F(z) + C, and we write

f fl@)dz = F(z) + C.

The discussion of the definite integral is postponed to Chap-
ter VI. In the meantime we shall assume elementary knowledge

when necessary. ‘
7. Taylor’s series with a remainder. The theorem of the mean

is the simplest case of a more general theorem which we shall now
prove. For that purpose let us write (b )

JO)=f(a)+ (b— a)f’fa) + f7 (@) +
(b

+ — f(")(a) + R. 1.
"Chis is always possible if f (a:) possesses the derivatives which oecur
in (1), since (1) itself defines R. We wish to determine the value

of R as far as may be possible.
For that purpose let us define P by the relation

(=
R T @
and write down the auxiliary function b —
F(x) = f(b) — j(x) — (b—*l)f(ﬂ——~ f"( r) —
— (b ) f(n)( ) (b - x)"+1 (3)

(n+1
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which is formed from (1) by changing a to x in all the terms
except P.

Now F(b) = 0, as is at once apparent from (8), and F(a) = 0 by
virtue of (1). Hence, by Rolle’s theorem, F/(£) = 0, where £ lies

between ¢ and b.
Differentiate (3) with respect to x. All the terms obtained

cancel, except the last two, and we have

b—zx)* (h 0 A\®
P == Eo D g  O=p
a
Substituting in (4) the value z = 55, for whlch F'(E) = 0 we
obtain f(n+l)(£)
a;ld therefore R= b—ar” - fm (), (5)
n+1)! )

This is the value of R in (1). It measures the difference be-
tween the value of f(b) and the sum of the first » 4 1 terms in
the right-hand member of (1). It may therefore be called the
remainder after n 4 1 terms.

The formula has great theoretical value. In addition it may
be used in calculation as follows :

If we know the values of f(x} and its denvatlves for x = a, we
may compute the value of f(x) for x = b by use of the first n -+ 1
terms of (1). The quantity R as given in (5) will then measure
the error made in taking the result of this calculation for the
value of f(b). Tt is true that the value of R will not be exactly
known, since £ is unknown, but it may frequently be possible o
determine a numerical quantity which R cannot exceed in absolute
value. . .

For exampble, consider sin x. The values of sin z and cos « are

s . . 4 )
aqsumed to be known for z = a ==--. We wish to find the value

T 61 °
f for t=5b=— —
of sinz for x = 3+180 =07
need to find sin 61° knowing the sine and cosine of 60°.

-From (1) we have

Expressed in degrees we

in BT gin T 4T T LT n, mo2 --T-E—-“)Rcoq TR
s 180 3 + 180 3 21 \180> & Q[\180/ T

1/ 7 \* T T\
whe P — B~ —
where = 4v<180) sin £, <3 -5 18() '
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Since we know that the sine of any angle is less than unity, we
have 1/ 7 \4
R < Z<18_0> < .000000004.

As another example let us attempt to find how many terms of
(1) must be taken to compute sin 12° to the nearest sixth decimal

127 n
place. In (1) we placea_O,b=—1—8—6-_ig- Then
.omoowm 1/7N 1/ m\® 1/m\*
sin 5 =5~ 51l15) +ailts) — il tR ©

Here R is +
sure that @+ 1!

1 T n+1
21 < GrilR)
‘and we wish to determine » so that

n+1
ﬁ <{5> < .0000005.

By trial we find that n+1=7, n=6, and hence the first
three terms of (6) are to be taken. This value of n is sufficient for
the purpose, but in this case it is not necessary. From the
manner in which » was obtained it is clear that a smaller
“value of » may do.

Since we have used Rolle’s theorem in deriving (1), the hypoth-
eses underlying that theorem must be met; that is, F(x) in (2)
should be continuous and possess a derivative in the interval
(@, b). This means that f(x) and its first n 4 1 derivatives
should each exist and be continuous in the same interval. Then
.if z is any value in that interval, the same conditions exist in the
interval (a, x), and we may write in place of (1)

T n+1 . T
(E) sin £, with 0 < £ < 5 and we are

f@)=f@)+ @ —a)f'(a)+---+ (x_;!_a)_'.lf(n)(a)
+ @.___a_)n:f(nﬂ)(s) @<t <z @
(n+ 1)! )

Equations (1) and (7) are two forms of Taylor’s series with the
remainder.
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In the particular case in which o =0, we have Maclaurin’s
series with the remainder ; namely, y

2 n
f(x) = f(0) + «=f"(0) + gziif”(o) 4+ %f(”)(())
n+1 : .

+ an—i— l)lf(n-H)(E)'
O<éi<m (8)

The student has probably met in his elementary course the
infinite series known as Taylor’s and Maclaurin’s series. He
should therefore note carefully that we have to do here not with
infinite series, but with finite polynomials, although the last
term is not definitely known. The infinite series arise from (7)
or (8) if n ean be taken indefinitely great and if the value of R
approaches zero as n increases without limit. The discussion of
this case, however, leads to questions of convergence and the
like, and will be postponed. As a matter of fact, the finite series
(7) and (8) are sufficient for most practical purposes.

For example, we find from (8)

3

; x® 2t 2"
smx=x——a+5—!+:ﬁf €3]

x3 x5
=L - — e 7
e T1g0 T %

e xt xb
cosx=1——§-!+zl—!+&f‘ &)

z? ozt o
—1—§+Q+Qx-

A A
. & ——+ —+ Pz’
Therefore  tanzx = il:s : = 22 ]ﬁO
- 6
TR
a® 225 .
=2+ 3+t 15 + Sz’

where S is determined in terms of P and Q by the usual process of

division. This is a much simpler way to expand tan z than by
direct use of (8).
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. . 7 da 1
Again, consider o T a7 tan—' z.
We may write
r+%?=1_x2+x4_x6_}_x8_ .. ~:}:x2k:Fx2"‘+2P.
Therefore
T dx x5 17 79 2k+1 .jﬂ k2
A i:—:;i— —+—“——'+—— . 2k+1:F Pdx.
Now P = I + o by direct division. Therefore

xlk +3

2k+3

P <l aad f x2%+2 pdy <j 22Eidy <
We have, therefore,

xa x5 x2k+l
I S —_—— .. — }
tan”w=z—g+3 oyl TR
x2k+3
where _ IR < Yy

Other forms of the remainder besides that given in (5) are =lso
useful. If we apply Rolle’s theorem to the funection

(b b—=z

Gy =J0) — @) = B )f (@) =+ — C L gy =2
which vanishes when x = @ and when x = b, we find that
) ®
or, writing £ =a + 6(b — a), whexje 0<f<1
p= OG0T A0 gy, (16)

n!
Again, if we start with the identity
@ —j@=[" Tew-od
and integrate by parts, we have )
@ —J@=@-af@+ [ ie-od.

Again integrating by parts, we have
(x —

1~ f@) = @ = a)f @ + - @) + f z,fm(x f)dt.
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Proceeding in this way, we have, finally

xan

R=]  — f‘H Dx — t)dt. (11"
In particular for 'Maclaumn s series, where ¢ = 0,
E= ] f‘"“)(x — &ydt. (12

8. The form g Consider the fraction

$()
and let there be a uumber a for which j{a) = 0 and ¢(a) =
The substitution of x = ¢ in the {raction produces the meaningless

symbol g: so that the value of the fraction is not defined for o == ¢

It is customary, however, to extend the definition of the fraction
by defining its value for x == a as the huit, apm oachad by its value
as « approaches a. [or example, consids:

22— g2

For all values of = except z =g the value of this fractich is
x+a. As z—a, v+ a— 2 a; therefore we say, by definition,
2 4

x .
that the value of — when 2 =¢a is 2 a.

To obtain a general method for finding thig limit we begin by
- applying Rolle’s theorem to the function

J®) — fla)

d(b) — pla)

which obviously vanishes when & = < and when « = 6.

Jb) —flay _ f(&

o) — dl@) @&

In (1) let f(a) = 0, ¢(a) =0, and b=z We have

f@ &

@) — pla)] — [f{x) — HaX

Hence o <&<h (3,

= o <& <z (2
o0 " gin @i v
Now as x — a, £ — ¢, and therefore
. 1B
Lim =—= J(@) = Lim FAIN @

2o <;b(x) tro @(E)
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Now unless f'(a) = 0 and ¢’(a) == 0 we have the result
f@) _ f@
e @) ¢
If, however, f'(a) =0 and ¢’(a) =0, we must apply (3) again
with the result Lim f@ L J® re @
zoa @(X)  ¢-a ¢(5) ¢”(a)

unless f’(a¢) =0 and ¢’ (a) =90. In the latter case formula (3)
must be applied again. '
We may sum up in a rule known as L'Hospital's rule.

4)

To find the value of a fraction which takes the form -8 when x = a,
replace the numerator and the denominator each by its dertvative and
‘substitute x = a. If the new fraction is also g’ repeat the process.
For example,

Lim ¢*—2cosx+e7? L €+ 2sinx—e* [ez+2cosx+e“’}
—3 m— = < =
- 0 xsinx z-0 SiInzx+2xcosx |2cosxr—asinxiz=o0

9. The form 3-5- Consider the fraction

J@)
@)’
and let f(e) = © and ¢(a) = © by hypothesis. The value of
the fraction for x == a is then defined as the limit approached by
the value of the fraction as z increases without limit.
We shall prove that L’Hospital’s rule holds also for a fraction
which takes the form %
We shall first take the case in which a =
From (1), § 8, we may write

f) —fe) _ f®
B — ) ¢(E)

‘where ¢ is 2 large but finite value of xz. From (1) we derive, by
simple algebra, $() ©)

@ r® e

d@ ¢’ - fle)
f(x)

c<tE<a) 1)

@)
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We shall now assume that :’i% has a limit 4 as £ — oo,
We may consequently take ¢ so large that ,;((c)) and therefore.
;((S‘E)) differs from A by less than any assigned positive quantity e;.
This fixes ¢. Then f(¢) and ¢(c) are finite, and £ may be taken so
large that (¢

122
___o@
f(c)
 f@)

differs from unity by less than any assigned positive quantity es.
We then Wave, from (2),
X
i‘-(;)\—: (A+ 1)+,

where Il < €, i'fl‘zi < €.

From this it is apparent that
. f(=x) I & . (@
Lim = A = Lim = Lim —=-.
e $(T) :*w¢(5) zow @ )
This just1ﬁé° Hospital’s rule for the case ¢ = . “¥e need now

f(x)

to extend this result to the case in which m becomes 2 forx=a
when a is not infinite. For that purpose place x=a +1 so that
when x = a, y = . Then Y

®

f@) f<a ) y> Fy)

= N 4)
50 far ) W
md Lm0 g qiii %ifsg%i' ®
But F'(y) = f’(ﬁ" dr_ -1 '( z),
and d'(y) = ¢'(2) ——’ = -y- L o).
Therefore (5} gives Lim 1&—’ ~ Lim L&), (©6)

ien $(z)  ame §'(z)

From results (3) and {6) 1."Hospital’s rule follows.
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10. Other indeterminate forms. A. product
f(z) - o(x)
may give rise for a value of £ = a to a form
0-00, -
and a difference fx) — o (x)
may give rise when x = a to a form

00 — 00,

(1)

@

In such cases it is usually possible by an elementary operation
to transform the product (1) or the difference (2) to a fraction

rule.
_z2

For example, the product z"e

when 7 is positive becomes % - 0 Tor z = o0,

zﬂ
We have, however, xhe ! = ;.
e
Then, by I’Hospital’s rule,
.z . nx"? . n(n—2)zx**
Lim = Lim & = Lim e ——
z-+ 00 € Zz- 00, 2e z- 4¢°

. -
which takes the form g or % when z = a, and apply L’Hospital’s

Proceeding in this way it appears that eventually z will dis-
appear from the numerator of the fraction, no matter what » is,

and therefore Lim z"e—=* = 0.

- o0

Again, the difference sec z — tan z becomes © — o when z =

1—sinz
cos X

But sec x — tan ¢ =

which becomes g when z = —725 Therefore

Lim (sec x — tan z) = Lim —

1—sinz

L4
L= x—

2

An expression of the type
[f ()]

may, when z = a, give rise to forms
Oo, 0 o' 1::0’

= COSZ
2

m}ﬂ
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and the like. Such an expression may be reduced to a type - 0 or
by the use of logarithms. Thus, we write 0

u = [f(z)]**.
Then log u = ¢(x) - log f(x).
If Lim ¢(z) - log f(z) can be found by the previous methods, the

limit approached by u can be found.
1

Consider asan example (1 — z)*

when x = 0. A plausible procedure would be to place x = 0 and,

obtaining 1%®, to say that this is 1 since any power of 1 is 1. But

this would ignore the fact that we are interested in the limit of
1

(1 — z)* as x approaches 0, which we have defined as the value of

-the function when x = 0. We therefore write
1

u = (1 - x);,
1 _log (1 —x)
logu—-xlog(l x)_——_—x .
By L’Hospital’s rule,
Lim log (1—2) —-—1.
z-0 x
Therefore * Limlogu=~1,
x-»0
and Limu=e¢e!
xz-0

11. Infinitesimals. An infinttesimal is defined as a variable which
approaches zero as a lemit. When two or more infinitesimals ap-
proach zero at the same time, they may be compared by consider-
ing their ratios.

We say an infinitesimal 3 is of the same order as an mﬁmtesmnl
a if 8
Lim — =k, (1)

«

where k is a finite quantity different from zero.
An infinitesimal B is.of kigher order than an infinitesimal « if

Lim 2 =o. @
[0 4
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As an example, consider an infinitesimal angle o (represented in
Fig. 15) and describe an are of a circle PQ of radius unity. Let
B = PN =sin «, A P
Y=NQ=1-—cos a.
By a well-known theorem which is

used in deriving the formula for the
derivative of sin z,

LimZ -1, o 1
o FiG. 15
Therefore PN is of the same order as «.
. 11—
Also Lim X = Lim ~— 2% _ o,
« «a

Hence # is of higher order than «.

A measure of an order of an infinitesimal may be given as fol-
lows. If « is taken as an infinitesimal of the first order, then
a2, o, at, - - - are called infinitesimals of the second, third, and
fourth orders, respectively, and 3 is an infinitesimal of nth order
with respect to «, where = is positive, if

. B .
Lim — =k,
im = ®)
‘where £ is a finite quantity not zero.
For example, consider v = N@Q of Fig. 15. We have

I—cosa 1

Lim ——= ==
a- 0 (11 2

Therefore NQ is of the second order with respect to a.
Equations (1) and (3) lead to the forms

B = ka + ae, 4
B = ka™+ e, 5)
respectively, where € is another infinitesimal. In each case the
first term on the right of the equation is called the principal part
of the infinitesimal. An infinitesimal and its principal part are
obviously of the same order and differ by an infinitesimal of higher

order than either of them.
If we denote by (3 the principal part of 3, formulas (4) and (5)

become € .
B=R +.31]‘c= B1 + Bre&. ()
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Theré are two convenient ways to determine the order of an
infinitesimal 8 with respect to a: One is to evaluate
Lim é—
a0 a®
by L’Hospital’s rule, so choosing n that the limit is finite and not
zero. A more expeditious way, when 3 can be placed equal to a
function of o, is to expand 8 = f(e) by Maclaurin’s series ; then, if

B = ka™ + khia™*! + R = ka™ + kia™*! + o™ t2P,

we have / g; =k 4+ ka4 o?P

and Lim &5 —%,
a->9Q o™
which shows that the degree of the first term in the expansion
of B8 determines the order of . c

We shall illustrate these methods
by inquiring by what order of infini- 4 eI B
tesimals an infinitesimal arc of a
circle exceeds its chord. In a circle / 0/%
of rzgiius a and center O (Fig. 16)
let AB be an infinitesimal arc and 0
AB its infinitesimal chord. Draw
the radii OA and OB, and draw ODC
perpendicular to AB. Let the angle

BOC = 0.
Then AB=2 ad, FiG. 16
AB =2asin 6,
and ) AB— AB=2ab—2asin 6.
Take AB as the o of our general discussion, and let
B=AB — AB.
We have Lim 8 = 1im 290 —2asin8_,
as0 & 00 2 a0

“Hence B is of higher order than c.

.. B8 _ B _ 1
Similarly, I:HIDI i 0, %ing Pl vk

and therefore 8 is of the thifd order with respect to a.
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The second method is to place
B=2a0—2asin 6

6
=2a9——2a<0————+R>
3!
2a6°
+ R

BEY
(13
T 24a?
We have accordingly shown in two ways that the difference
petween an infinitesimal arc of a circle and its chord is an infini-
tesimal of the third order with respeect to the are.
12. Fundamental theorems on infinitesimals. There are two im-
portant theorems invelving infinitesimals; namely,

+ R

L If the quotient of two infinitestmals has a limii, that limit s
unaltered by replacing either infinitesimal by ils principal part.

To prove this let us place ,
B=751+ Bier, a=a;+ ai€,
in accordance with (6), § 11. Then
E= Bit Bier Bild a,

= ’
a . o+ aee2 ol e

- whence Lim B = Lim B, (1)
o [45]

II. If the sum of n positive infinilestmals has a limit as n increases
ndefinitely and each tnfinitesimal approaches zero, that limit 1s
unaltered by replacing each infinitestmal by its principal part.

Let 81, B2, - -+, B» be a set of n positive infinitesimals, and let
ay, oz, - - -, o, be their principal parts, also positive. Then
Bi = ai + aue€,
and 261 = Eai + Eaifi- (2)
Let v be a positive quantity which is equal to the largest
absolute value of €;., Ther, for any <,
- €& =,
and — Yo = €0 T YA,
the multiplication being allowable since «; is positive.
Then -y = e = vy ®)

I 1A
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By hypothesis, as n increases indefinitely, Za; approaches a finite
limit and v approaches zero. Therefore, from (3),

Lim Ea,ei =),
and therefore, from (2), Lim > 8:=Lim X a.

The theorem stated is known as Duhamel's theorem.

The proof assumes that all the infinitesimals are positive. The
theorem is obviously alsoc true if all infinitesimals are negative
but is not necessarily true if the infinitesimals are not all of the
same sign. The proof also assumes that Lim e, =0 no matter
how ¢ depends upon n.

For the important applications to definite integrals the theorem
may be replaced by Osgood’s theorem, as follows : :

Let an +as+ -+, be a sum of n infinitesimals, and let o
differ uniformly by infinitesimals of higher order than Ax; from the

b
elements }(x:)Ax; of the definite integral | f(x)dx where f(x) 15 con-

. va
tinuous in the interval a =x =b. Then the sum a1 +azs+ -+ an
approaches the value of the definite integral as a limit as n becomes
mfinite.

To prove this, let a; = f(x;)Ax; + § Ax;, where |{i|< €, by hy-
pothesis. Then -

| Do — 3 fx)Ax.| < €2 Azi= e(b— a).

But (§ 54) we can make

l}’_jf(x,-)Ax.- - f @)z | < e.
Therefore IZa;——fbf(x)dx < elb—a-+1),
whence Lim Eai = f bf(x-) dx.

13. Some geometric theorems involving infinitesimals. We shall
give in this section certain geometric theorems which are of
some importance in our subsequent work.

I. Under certain general hypotheses the length of am infinitestmal
arc differs from that of its chord by an infinitesimal of higher order
than either.

Consider an arc of a curve AB (Fig. 17) and its chord AB. We
shall assume that the are is a continuous curve and has a con-
tinucusly changing direction.

C
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This amounts to saying that if axes of x and y are chosen by
which the equation of the curve becomes y = f(x), f(z) is a con-
tinuous funetion of x with a continuous derivative.

We shall also assume that a perpendicular from any point P
of the arc AB meets the chord AB in one and only one point @,
and that as P moves continuously from A to B along the are,
Q moves continuously and always
in one direction along the chord.

The length of the are AB is
defined as follows:

The arc is divided in any
manner into » parts, and chords
are drawn connecting the points
of division. If the sum of the
lengths of these chords approaches A
a limit, independently of the man-
ner of division, as n is indefinitely increased while the length of
each chord approaches zero, that limit i is by definition the length
of AB. We shall assume that the are AB has a length.

Divide the are AB into n parts by the points Py, Ps, - - -, Pn_3,
draw the chords P;P;,1(Po = A, P, = B), and drop perpendicu-
lars from the points P; to the chord AB, thus determining the
points @i, Qz, - -+, Q.—1. Let the lengths of the chords 4P,
PPy, - -+, P,_1B be ay, az, + -, &, and the lengths of the seg-
ments AQi, QiQs, - - -, Q.—1B be B, B, - - -, B

Then, if ! is the length of the chord AB and s the length of the
arc AB, which by hypothesis exists,

Bi+Ba+:--+Br=1 (1)
Lim (a1 + a2+ - -+ aq) =s. 2

" ®

Now f; is the projection of a; on AB. Hence, by the law of
projections,

Fi1G. 17

B: = a; cos 0,

where 0; is the angle between the chord of length a; and the
chord AB. Hence (2) is

Lim (B: sec 6, + B2 sec 02+ - - - + B, sec 6,) =s. 6)]

Under our hypotheses sec 0; is always positive, although 6; may

be negative. Our hypotheses allow us to apply the theorem of the

mean to any portion of the curve between A and B. Therefore
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there is some tangent which makes an angle 8; with AB. Hence,
if ¢ is the largest angle in absolute value which any -tangent
makes with AB, we have

1 = sec 0; = sec ¢.
Therefore
Bi+ B2+ -+ Bn = Brsec b+ Bzsec 02+ - -+ Bnsec b,
=sec ¢(Bi+ B2+ - -+ Ba),
or, from (1) and from (3),

l=s=lsecop, - 4)
or 1= ls_ = sec ¢, (6)

where the equality signs could hold only if AB coincided with AB.
This result is true for any finite are for which the hypotheses
that have been made hold. It remains true as B approaches A.
But then sec ¢ approaches unity. Hence we have
Lim2=1, )
1-0 1
or s=1+le
which was to be proved.

II. Under the hypothesis made tn I the perpendicular distance
from one end of an infinitesimal arc to the tangent at the other
end 18 an tnfinitesimal of higher order than
the arc, and the length of the tangent
from the foot of this perpendicular to the B
point of tangency 1s an infinitesimal of the
same order.

Consider again the arc x@ (Fig. 18)
with the properties as before. Draw the
tangent AT at A, and drop the perpendic-
ular BT. Let AT=1¢ and BT = h and A
angle BAT = a. FiG. 18

T

Then t=1cosa, h
t 1 h
8 8

and

I
il
|
)
o
w
R

=0. ) (7

508 $-0
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The relation between ¢ and k may also be found by means of
codrdinate axes and Maclaurin’s series.
Take as origin a point on the curve (Fig. 19) and as OX the

tangent at 0. Let Y
y = f(z).
be the equation of the curve. Then
f(0) =0 and f'(0) = 0, since the curve P

passes through O and the slope of the
tangent at O is zero. Then, by Maec-
laurin’s series,

x? z3 % M o
y = f(x) = f"(0) a1 +/7'(0) é‘, + R. Fic. 19

But OM =z and MP=y. Hence it appears that MP is of the
second order with respect to OM unless f'/(0) = 0.

II1. Except for infinitesimals of higher order than the lengths of
the arcs, an infinitesimal right-angled curvilinear triangle obeys the
same trigonometric laws as a straight-lined mghl angled triangle when
the hypotheses of I are satisfied.

Consider a triangle A BC (Fig. 20) whose sides are arcs of curves
which satisfy the hypotheses of I and which may be made to
approach zero together. Let the
ares intersect at a right angle at C
and let the angle at 4 be ¢. Draw
the chords AB, BC, and CA. The
angle between the chords AB and
AC is ¢ + € and that between BC
and CA is 90° + €2, where €, and e
are infinitesimals approaching zero
as the sides of the curvilinear tri-
angle approach zero. Then

BC _ sin sin (¢ + )

AB  sin (90° + €)
which we may write as

F1G. 20 -

R AB BC_ sn(+a)
AB AB BC sin (90° 4 €)
where BC means the are BC, and so on.
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Taking the limit as A, B, and C approach coincidence, and
using theorem I, we have —~
Lim —= = sin ¢,
AB ¢

o~ ~—~~ . ~~
or BC = ABsin ¢ + e3AB.
In a similar manner,
AC = AB cos b+ a;.»@,
BC = AC tan ¢ + e;AB,
AB%= AC?+ BC? 4 esAB
As an example of the use of the foregoing theorem consider
an ellipse with foci ¥.and #

(Fig. 21).

Let P and Q be two points in- TS
finttesimally near on the ellipse, / :
and draw PF, PF', QF, aund //
QF’. By the definition of the VAN
ellipse, T\

PF + PF' = QF + QF". N

With ¥ as a center and a \”‘;

radius FQ construct an arc of a ol

. . . e Fra. 21
circle cutting FP in §. With

F as a center and a radius F'Q construct an are of a circle
cutting #¥'P in R.

Then  SP— RP = QF — PF — (PF' — QF') = 0.
Then in the infinitesimal triangles S@QP and RQP
SP = QP cos 5PQ,
RP = QP cos RPQ,
excopt for infinitesimals of higher order. Therefore
cos SPQ = cos RPQ
except possibly for infinitesimals of higher order.
But the angles SPQ and RPQ are independent of the position
of Q.
Hence SPQ = RPQ;
and, since SPQ = FPA,
we have the result that in an ellipse the tangent at any point
makes equal angles with the focal radii to that point.
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14. The first differential. Consider now a function f(x) which has
- a derivative f'(x). If Ax is an infinitesimal increment of z, then
the increment Ay = f(x -+ Az) — f(x) is an infinitésimal, sinee f(x)

is continuous. Now L Ay
im — = f'(z);
A f(x);

whence Ay = f'(x)Ax + € Ax. 1

Aside from the values of x for which f'{(x) is zero, or infinite,
this is of the form (4), § 11, and f'(x)Ax is the principal part of
Ay. This we shall call the differential of y and denote it by dy.

The case of the independent variable x, however, is different.
For in that case f(x) = x; therefore y =z, and formula (1) is

simply Az = dz. (2)

There is no possibility, therefore, of separating Az into two
parts; in other words, the principal part of Az is the whole of Az,
and we may take this as dz.

Summing up, we say:

The differeniial of an independent variable x is equal to the incre-

ment of the variable; that is,
dr = Az. 3)

The differential of o function y = f(x) s the principal part of the
increment of y and 1s given by the formula
dy = f'()dz. ’ “)

Suppose, now, we have y = f(x) and x = ¢(¢); then y = F(i).
Now, by the definition above, we have

dt = At,
dx = ¢’ (t)dt,
dy = F'(t)dt.
Substituting for F'(t) the value derived given in (1), §4, we
have dy = f'(z)¢'()d
whence dy = f'(x)dx. (5)

Note that this is the same form as (4); but in (4) dz is the
entire increment of x, whereas in (5) dx is the principal part of
that increment. The result is,

The differential of a function y vs given by the formula dy = f'(x)dz,
whether x 1s the independent variable or not.
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We are now ready to write the derivative as a quotient ; namely,

rw =22, Q
Tn differential form (1), § 4, becomes
dy _dydx ™
dt  dx di

16. Higher differentials. If » = f(x) and v = ¢(x) are two func-
tions of x which possess derivatives, we have, by well-known
formulas for differentiation,

2 win=7@+ @,
L) = @) +I@F @),
4 <z_b> _f@)o) — fx)¢'(x) .

dx\v [o@)]? ’
whence, by the definition of the differential,
d(u + v) = du + dv, 1)
d(uv) = v du + u dv, 2)
u\ vdu—udv
d(;) = 3)
Let us apply formula (2) to
df = f'(x)dzx.
We have d(df) = d[f'(x)1dx 4 f' (x)d(dx). 4)

Now we have, by the definition of § 14,
- dLf (@)] = " (z)dx.
It is natural to express d(dy) by d?y and it is customary to
express (de)? by dax?. This must not be confused with d(x?%),
which, by § 14, is equal to 2 z dx.
We have, then,  d%f = f"(x)dx? + f'(x)d%z. (5)
This is called the second differential of f.

Formula (5) contains a factor d2z which has not been defined.
However, if z is a function of another variable ¢, so that

z = F(),
we have, by another application of (5), the result
dx = F''(t)dt* 4 F'(t)d%,
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but here d” is still to be defined. It is evident then that (5) is
not sufficient to define the second differential of the independent
variable. We are accordingly free to frame that definition as we
will, and we say

The second differeniial of the independent variable is by definition
zero.

With this and (5) it follows that when x is an independent
vanable, d2f — flf(x)dx? ; (6)
but when z is uot an independent variable,

d*f = f'(x)dx® + f'(x)d%x.

The fact that the second differential has different forms accord-
ing as z is independent or not is in striking contrast to the fact
that the form of the iirst differential is ailways the same. Second
differentials must therefore be used with more care than the first.
We notice that when x is the indepeundent variable we have,
from (6), (1 f

i ( ') == (7)
whereas when z is not independent we have, from (5),
' d*f — f'(x)d?>x  d>*f dx — df d’x
Y () = 3 = 3 (8)
(dx) (dx)

which agrees with (7) only When d’x = 0.

In spite «
derivative f’(x) even when x is not the independent variable.
. . . . d*f
This may be explained by interpreting d—rz as a symbol for

o
sy )

i
dz)  d[f()] f"(x)dx y
Then = dn = f'(x). (9)

2

It follows that g:—cé is used in two senses: first as a symbol for

the second derivative and secondly as the quotient of df as
given in (5) by dx?. These two senses agree only when z is the
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independent variable. The context usually makes clear which
. © La? ..
sense is meant. As a matter of fact, the use of -—g,, as a derivative

is more common than the other use. dzdx‘

If in (8) we place y = f(x), and interpret - Joi s a symbol for
the second derivative f/(x) and rot as the quotient of differen-
tials, we have a2 Pyds dyo 122

d?% diz dt  di di?
Pk @)3 : (10)
(\dt

This formula may also be obtained by direct differentiations,
thus: ‘ d

ey
dy _ dt
do da’

ds

d( g/ di di? dt
dx\dx/ d1 (dx> dr ((_1_.11)

dt dt

(d?/ ) dydx d’xdy
dy d\ dt

as before.

This result may also be obtained by. dividing the numerator
and the denominator of the fraction in (8) by (dh3.

The third, fourth, and higher differentials are d(d%zr) = d°z,
d(d*x) = d*z, ete.

Since, if o is the independent variable, d%t = 0, it follows at
once that d"x = 0. That is,

The nth differential of the independent variable is zero if n ts
greater than 1.

The higher differentials of a function of x are found by oper-
ating with che laws (1), (2), and (38). Thus we have

| % = f(@)de? + f (2)d2x. an
Then d3f = £ (x)de® 4 8 £ (x)dx d2x + f'(x)d%. (12)
It is to be noticed that (12) gives
e df‘if
fri(z) = e (13)
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only when x is the independent variable. Otherwise, if ¢ is the
independent variable we have, from (12),

3 2
T +sr@E s

As in the case of the second derivative, the expression
, &5
dz® .
is used for the third derivative-even when z is not the independent

variable. In this case
= @)
\ dz®  dr|dz\dz/|

and g—j—; is not the quotient of d3f by da?.

- From (12) we have
» d3f — 3f”(x)da: d%x — f'(x)d%x
f ((IJ) = da3 -

By means of (8) of this section and (6), § 14, this reduces
readily to the form

" dx(d®f dx — df d®z) — 3 [d*f dx — df d%x]d%x

If ¢ is the independent variable, we may divide all the terms of
the numerator of (15) by dt® and obtain a result in derivatives
which may otherwise be obtained by direct differentiation.

Similar results are readily obtained for the fourth and higher
differentials.

16. Change of variable. The methods and formulas just obtained
may be used to solve certain problems connected with the change
of the variables in a given expression. dy d2y

1. Let there be given an expression involving , Iz and T
where the last symbol means a second derivative, and let it be
required to replace y by z where y = f(2). We have at first, by § 4,

dy N
=@ T &)
and then, by direet differentiation,

L ro(E) o @

(15)
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2. Let it be required in an expression involving y, Zyr and ?{—é
to replace z by ¢, where xz = ¢(t). x

&y
dy _dt_ 1 dy
We have da:_d__:c—.qS’(t) 7 (3)
dt

and, again by direct differentiation or by (10), § 15,

dzy dr dyd%ic d% .
dy A dt  dt df  df 80~ dt ¢ ®

= (@-)3 =T wor @
dt
3. Let it be required to interchange x and y in an expression
2
involving =z, %x and -gx—g This is a special case of (4) in which
dy d%y
t =y, and therefore E =1, p7 0. We have
dy 1
dy
&
d2y d,yZ
e ©®
dy
EXERCISES

1. Prove that if f(x) and ¢ () are continuous at x = a, then f(x) + ¢(x),

f(x) - ¢(x) are continuous at x=a, and that — 1@ 4
at £ = a unless ¢(a) = 0. (x)

is also continuous

2. If ¥ = f(x) is continuous when z =a, and z = ¢(¢) i continuous
when ¢ = b, where a = ¢(b), show that y = f[¢$(¢)] is continuous when
=b.

3. Show that the theorem of the mean as given in § 6 may be trans-
lated into the theorem of the mean for definite integrals; namely,

j;bi'(x)dx =®b—a)FE). @<E<b)
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4. Expand ¢ into Maclaurin’s series and shiow thai

and thai [Ri<
(n + 1!

5. Wlat error is made by computiag ot by five terms of Maclaurin’s
series? How many terms must be taken to ohbtain ¢3 correct to seven
decimal places?

6. Show that in the expausion of log (1 4 x)

n 41

IRl < o when x > 0,
n+1

41
and that |RI< K - — when 2 < 0.
n+1)AFx)n*!

7. Frem the result of Ex. 6 estimate the error made in <umpn
log 1.2 from three terms of the series. How many terms «f the
are sufficient to compute log 1.2 accurately to six decimal places?

8. From the result of Kx. 6 how many terms of the expansion oi
log (1 4 x) are sufficient to compute log .9 to five decimal places?

9. Show that in the expansion of log i——tz
~— L
. 24" A
(Bi< PRI BT when x > €.
D ey
and that [RI< 2zt ] <

m+2)(1 4 )" *
when x < 0, where r is the exponent. of x in the last te.m retained in
the expansion.

10. From the result of €x.9 how many terins of the expansicn of

log %»t are required to compute log § to four deeimal ulaces?

11. Show that in the expansion of (1 4 x)*
k(o —1)+ (kb —m)x™ !
(n+J"'

k(k—1) - (k=n)
lf
{71+1)'(1+J_\"—l+1

when = > 0,

|[Ri<

and that {R|<« | when ¢ < 0,

itn—k+1>0

12. From the re‘xult of Ex. i1 find how many terms of the binomial
geries are sufficient to compute V162 to four decnnal places.

18. By integration find an expansion for sin~
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e . sin”!x
14. By division find an expansion for 7 .

1—x?
T
15. Find an expansion for j; e~ "*dx,

x
18. Find an expansion for f(; cos xdzx.

Find the limit approached by each of the following functions as tke
variable approaches the given value:

yy C08%—cosa .5803%,05—‘?-3
zT—a sec 5 2
- 1—logzx
18 575 o o 23-———,;?"’95—*0-
z
log cos 2« lo < _._>
19. Of’ Bt E\T r
(r —=)* 24, — x> .
¢ tan x 2
anr—ax ‘ log = N
W ez T 25. fn » x —> ® (n positive).
sin © ~ ¢ dd .,
21. -0, 28. L, z — » (n positive).
r—tancr &

27. Find the limit approached by
ar”+ a4 ... 44,
box™ 4+ biyz™ 1 4 . - . 4+ by,

as x—> ©, where r» and m are positive integers, under each of the three
hypotheses » < m, n =m, n > m.

28. Show that for all positive and negative values of n

Lim e ¥ = 0.
-0
29, Show that. for all positive values of n and m
. (log o)™
Lim _g‘:x_:)__ = (.

x> .L‘"'

80. Show that for all positive values of n and m
Lim z*(log )™ = 0.
T~ 0

b
31. Evaluate Lim[ —— ] . 5
N s~ 7 sinzl 3% Evaluate I:ing 1 + ax)*.
32. Evaluate Lim 27, 35. Evaluate Lim (sin x)%®=,
z—0 -
1 2 3

83. Evaluate %HE . 86. In Fig. 16 find the order of CD.
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37. Let T be the intersection of the tangents to the circle (Fig. 16)
at A and B. Find the order of TC — CD.

88. Two sides AB and AC of a triangle differ by an infinitesimal «,
and the angle @ at A is an infinitesimal of the same order as «. What
order of infinitesimals is neglected if the area of the triangle is taken as
1 AB%207 as 3 AB- AC- 07

89. If y = f(x) is a curve in Cartesian codrdinates, show that the area
bounded by the curve, the axis of x, and two ordinates separated by an
infinitesimal digtance Az differs from y Az by an infinitesimal of higher
order. .

40. If r = f(0) is a curve in polar codrdinates, show that the area
bounded by the curve and two radii making an infinitesimal angle Af
with each other differs from % 7?A6 by an infinitesimal of higher order.

41. What order of infinitesimals is neglected in taking as 4 7r%h the
volume of a spherical shell of finite inner radius r and infinitesimal
thickness 4?7

42. A parallelogram has an angle which differs from 90° by an infini-
tesimal of first order. What order of infinitesimals is neglected by taking
the area of the parallelogram as the product of two adjacent sides?

43. Show that in a hyperbola the tangent makes equal angles with the
focal radii drawn to the point of contact.

44. Show that in a parabola the tangent makes equal angles with the
focal radius to the point of contact and the line through the point of
contact parallel to the axis.

45. A circle of radius a rolls on a straight line. A point P on its rim
describes a cycloid. If P moves to P’ by an infinitesimal rotation d¢,
show by the method of infinitesimals that PP’ =2a sin 3 ¢ d¢. Note
that the linear dispiacement of the cirele is a d¢, and that the motion
of P takes place in a direction normal to the line from P to the point of
contact of the circle with the straight line.

#A6. Find d% when y = sin z2 under the two assumptions (1) that x
is the independent variable; (2) that z = e¢’. In the latter case first use
formula (5), § 15, and check by substituting for x in the given value of 3.

2
47. In Ex. 46 find i—% as a quotient of differentials and also by direct
differentiation.
48. Given y = ¢%, find d3 (1) when z is the independent variable;
(2) when r = log z and 2 is the independent variable. Verify by substi-
tution and direct differentiation.

49, in the equation

d? dy\2
=9 d'{’i + ”(di) +a-yi=o
place ¥ = sin 2.
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50. In the equation x? i__ +x % + (2% — n?y = 0 place y = z™2.
61. In the result of Ex. 50 place r = 2V71.
. 52. In the equation 2
1- xz) 2Y o4
place z = cos 6.
53. Show that if the equation of a curve y = f(z) is transformed to

polar coérdinates by the substitutions = =17 cos 8, y = r sin 6, the
2

derivative g—— becomes
r2d6% + 2 dO dr? -~ r d?r df
. (cos 0 dr — r sin 0 d60)3
where 6 is the independent variable.
54. Show that the formula for the radius of curvature of a plane curve

d

dy+ nn+ 1)y =0

y = f(x), namely, . dyy 3
_ [ - (@‘ J
= o ,
dz? ,
_ [de® + dy?*
becomes P= dx d%y — dy dy iz

for the curve x = fi (1), ¥ = f2(1) where { is the independent variable.
55. Show that the formula for p given in Ex. 54 for the curve y = j{z)

becomes
dr213
lr2 + —,i\ ]
p= a8/ |
2 124
7242 <£i—q rs i
in polar cobrdinates. ad age

56. Show that the formula for p in Ex. 54 becomes

da\2 %
1+ (5)
_L +<dy !
- dir

. o dy?
if the curve is taken as z = ¢(y)

57. If x =1 cos 6, y = r sin 0, show that

dy )

Tar U 48,
dy  dr

x+yd:c

Note that this is the expression for the tangent of the angle which a
curve makes with a line from the origin.



CHAPTER 1II
POWER SERIES

17. Definitions. The expression
a0 + @ -+ @2 + @52’ 4+ @2 e (1)
is a power series. 1f the number of terms is finite, the pcwer
series reduces to a polynomial ; if the number of terms is unlim-
ited, the power series is an infinite series. It is with infinite series
that we are concerned in this chapter.

The series (1) is said to converge for a given value x = z; if the
sum of the first n terms approaches a limit as » is indefinitely
increased. The limit is called the value of the series or, somewhat
inaccusately, the sum of the series for z = ;.

A simple and i-.portant example of a power series is that of
the geometric series

o + aox + aox” + avi® + - - - A o 4 - - (2

The sura of the first n-terms of the series is, by elementary
algebra, 1 —z" o o

| it (3)

-2 11—z 1—z
Now if x is numerically less,than unity, the last fraction in
(3) approaches zero as # increases indefinitely, and the sum of
the first n terms approaches the limit
ao .
1—2
Hence the geometrig s:ries (2) converges for any value of « in
the interval -1 < z < 1.

The series (2) defines, then, the function - - o

in the interval (— 1, 1), but does not define the function outside
of that interval nor at its ends. \

A series which is not convergent is called divergent. As an
example consider tlie harmoniec series

for values of x

1,1,1 1
Lgtgtgtd e
38
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Now 1+1>14,
bi+i+i> b
and in this way the sum of the first n terms may be seen to be
greater than any multiple of 4 for sufficiently large n. Hence the
sum of the first n terms does not approach a limit, and the series

diverges.
Return now to the general series (1) and set r = z;, obtaining

a0 + aury + a2t + asrd + - - - @t - - @)
Let.us replace each quantity by its absolute value, obtaining the
new series
[ao] -+ ||z |+]az||:®|+]as[|z:3 [+ - - -
+l a2+ - - N G)

‘We shall prove that if (5) converges, then (4) also converges.
Let s, be the sum of the first n terms of (4), and Jet s, be the
sum of the first n terms of (6). Now s, contains a certain num-
ber of positive terms whose sum we call p, and a certain number
of negative terms whose sum we call — ¢, so that

Sn = Pn — Qn. 6>

The positive terms of (4) appear in (5) unchanged, whereas
.the negative terms of (4) appear in (5) with signs changed. Hence

s, = Pn+ qn. (7‘

Now as n increases, s,’, p», and ¢, each increases, since each
is positive. Suppose s,’ approaches a limit A. Then p,, always
increasing but always less than A, must approach a limit B,* and,
similarly, ¢, must approach a limit C.

Hence, from (6), s, approaches a limit B — C. We have ac-
cordingly proved the proposition that if (5) converges (4) alse
converges.

It is te¢ be noticed that we cannot prove conversely that if
(4) converges (5) does; for s, in (6) may approach a limit even
if p, and ¢, separately do not. ‘

Summing up, we say that o series which converges when eack
term s replacsd by s absoluie value comverges as 1t stands. It is
said to converge chsolutely. 'The determination of the absolute
convergence of a series reduces, then, to the determination of the

* We will assune as ovident that a antity which 'ways increases eithsar eromes

infinite cr snnroaches o fintn Uredh

~
w
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convergence of a series of positive quantities, and for that we
shall find two tests useful: the comparison test (§ 18) and the
ratio test (§ 19).

18. Comparison test for convergence. If no term of a series of
positive numbers 1s greater than the corresponding term of a known
convergent series, the first series comverges. If mo ierm of a given
series 1s less than the corresponding term of a known divergent series
of positive numbers, the first series diverges.

Let L e e e R 2 T 1)
be a series of positive numbers, and let ‘
Mi+Me+Mzg+---+Mp+--- (2)
be a known cenvergent series such that
e E M, 3)

for all values of n.

Let s, be the sum of the first » terms of (1), S, the sum of the
first n terms of (2), and M the limit of S,.

Then, from (3), all terms M, are positive and therefore S, < M,
and also from (8) s, = S, so that we have

8, < M. 4)

As n increases, s, increases and, by (4), approaches a limit *
which is either less than or equal to M.

The first part of the theorem is now proved; the second part
is too obvious to need formal proof.

In applying this test it is not necessary to begin with the first
term of either series, but comparison may begin with any con-
venient term. The terms in either series before that with which
comparison begins form a polynomial the value of which is finite,
and the remaining terms form the infinite series considered.

For example, consider the series

1 1 1 1
Itotgatpt- o+t 5)

Ifp=1, no term of the series is less than the corresponding
term of the harmonic series

1.1 1
1+t3+3+s

and therefore in this case (5) diverges.

+...+_]_'+...,
n

* See footnote on page 39.
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if p > 1, we may compare (5) with the series

1 1 1 1 1 1 1
It etetotetetetest ®
where there are four terms equal to -5;, eight terms equal to él;?‘
and in general 2 terms equal to (2—119)—1, Now no term of (5) is
greater than the corresponding term of (6), and (6) is the same as
2 22 23 2k
et ter T ter T

This is a geometric series with ratio equal to

2 1\p1
é;=<§> < 1.

Hence the series (5) converges when p > 1 and diverges when
p=1

19. The ratio test for convergence. If in a series of positive num
bers the ratio of the (n + 1)st term to the nth term approaches a limit .
as n increases withoui limit, then, if L < 1, the series converges; if
L > 1, the series diverges; if L =1, the series may either converge
or diverge.

Let a+czt+cezt--Fentcprr - (1)

. ope . C
be a series of positive numbers, and let Lim LA

We have three cases to consider: B ® f:"
" CasE I. L < 1. Taker, anumber such that L < r < 1. Then,

P

Cpn+1

since the ratio approaches L as a limit, this ratio must

. n
become and remain less than r for n greater than some number,

say m. Then
Cm+1 < TCpmy

Cnt2 < Tlmi1 < 7Cm,

Cn+3 < Temiz < T3Cnm,
and so on.

Now compare (1), beginning with the term c,,, namely
cm+cm+l +cm+2+cm+3+"'9 (2)
with the new series

Cm + TCm + 120 + 13Cm + - - <. @) .



42 POWER SERIES

Each term of (2) is less than the corresponding term of (8), and
(8) is a convergent series, since il is a geometric series with its
ratio less than unity. Hence 2) converges by the comparison
test and therefore (1) converges.

. . ¢
Casi IT. L > 1. Since the ratio —>** approaches L as a limit,

" n
this ratio eventually becomes and remains greater than unity for
n sufficiently large, se: 2 > m.

Then ¢n+1 > Cmy Cm+2 > Cmt+1 > Cm, ete. Each term of (2) is
then greater than the corresponding term of the divergent series
cm+cm+cm+' Tty

and therefore (1) diverges.
Caske III. L = 1. Neither argument given abc e is valid, and
experience shows that the series may either converge or diverge.
As a first example consider
n-+1

142 +32+ A g gt @

The ratio of the (n + 1)st term to the nth term is

n
1 hich
3n
approaches the limit } as » increases without limit. Hence (4)

converges.
Again, consider
22 33 (n + 1)n+1
.1+2!+3!+“'+ + CEEN —+- 5)
The ratio of the (» + 1)st term to the nth term is

(m+1" <1T1\
n"

which approaches the limit ¢ as n increases. Hence (5) diverges.
As a last example consider

1 1
1+.,,,+ —+ - + +(”+1),,~r (6)
» A
The ratio of the (n+ 1)st to the nth term is <n n 1) » which

approaches 1 as n is increased. Hence the ratio test fails, but it
has been shown in § 18 that (6) converges if p > 1 and diverges
ifp = 1.

20. Region of convergence. We now proceed to determine the
values of z for which a power series converges. We begin with
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the theorem tnat if a power series converges for x = x;, it con-
verges absolutely for any value x = z; such that

lxzi < ]xl j.

We assume that the series

ao + @ty + aem® + - @ + - (1)
converges in any way and wish to prove that
’ ag -+ a1xe + a’x2 -+ c e apre™ 4 - 2

converges absolutely if |xs| <|x1].
Since (1) converges, all its terms are bounded ; that is, thereisa
positive number 3 such that for all values of n

l(lnx]"l "\: (:;;
‘\J"" " . A
Then |@nze” | =] anra" iir | )
K 1
Form *the series ‘
lao]+lmxa|+ - a4 (5)

By (4) each term of {5) is less than {nhe corresponding term of
the convergent geometric series

M+ M= +M|~' .
{20}
Hence (5) converges and therefore (2) converges absclufely.

If we place x = 0 in the series (1) we get ay as the sum of th
first n terms, and the limit of that sum as » increases indefiniis!:
is still @p. The series therefore converges for x == 0. This may b
the only value of x for which the series converges.

If there are other values of x for which the series converges,
let x; be such a value. Then, by the theorem just proved, the
series converges absolutely for all values of x in the interval
—r < T <.

Let us denote that interval on the number scale by @, Py (Fig. 22).
There may be no values of x outside the interval @, P for which the
series converges. If there is -w, w, -a, . 5 =, 2,
such a value s, then z con- % - N 5 P D br
verges absolutely in a new PP he oo ! B
interval QaPo(— e < 2 < x2).

If there is any value of x outside of Q3Ps for which the series
converges, we determine a new interval QsP3 for any point of
which the series converges absolutely. Proceeding in this way it
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is evident that the points P,, P2, P; either recede indefinitely
from the origin or approach a limiting position R; that is, the
series converges absolutely for all values of x or converges abso-
jutely in a finite interval

—R <z <R

and diverges outside that interval. This interval is called the
region of convergence. This argument does not say whether the
series converges on the boundary of the region or not.

The region of convergence of the series may frequently be deter-
mined by the ratio test applied to the series of absolute values.
Let us apply this test to the series (5), replacing each term by
its absolute value.

We take the ratio of
Anst 1" +1 _

P E S ®

(that this is the ratio of the (n + 2)d term to the (n + 1)st term
instead of the ratio of the (n + 1)st term to the nth term is unes-
sential). Now if the ratio

Ian +ll

[ @
approaches a limit L, then the ratio (6) approaches a limit L |x|
which is less than unity if |z| <% and greater than unity if

1 . . .
2| > A Hence the region of convergence is determined as
—— x < _1-.
L~ L

As an example take first the series
1+22x+822+---+mnx" 14+ (n+ 2" +---.

n+1
z. The

limit of this ratio as » increases indefinitely is . The region of
convergence of the seriesis —1 <z < 1.
Secondly, consider

r 22
1+i+§+"'+

The ratio of the (n + 1)st term to the nth term is

xn—-l
(n—1)!
The ratio of the (n + 1)st term to the nth term is 5 The limit

4
n.

of this ratio is 0 as » increases indefinitely no matter what the
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‘value of z. Hence the series converges for all values of z. The
region of convergence is — oo < x < 0,
Finally, consider
1424212243123 4 -+ (n—Dl* 4 nlan ...,
The ratio of the (n+ 1)st term to the nth term is nx. This
ratic becomes infinite with » for all values of x except z=0.
Hence this series converges only for z = 0.

21. Uniform convergence. Let (— R, R) (Fig. 23) be the region
of convergence of the power series

ao + mx -+ asze? + - 42" Ggpt T4 1)
and let (g, b) be an interval lying completely in (— R, R) (Fig. 23).
For explicitness take |b|>|a|. Let a b
the samn.of the first n terms of (1) be 3 5 %
denoted by s.(x) and the sum of the . Fic. 23

remaining terms by r,(x), where
n(®) = @n®™ + Q12" F G2zt I

Place Ru(x) =|anx™ |+ |tnp12* |4 |@nyp2a 2|4 - - -, 2)
Then [7.(x) | = R.(2). 3)
If (1) converges absolutely, it is possible to take n so great that
for any assigned positive quantity e

Ra(x) <€, 4)
but the value of n in (4) depends in general on z.
However, if n is so determined that

R,(b) <,
then with the same value of n and any value of z in the interval
(a, b) Ra(x) < R.(b) < €
since |z|<|b|. Hence, from (3),

|ra(2) | < e )

A geries is said to be uniformly convergent in an interval (a, b) if,
when ¢ has been chosen, a value of » can be found, independent
of z, so that equation (5) is true for all values of z in the interval.
We have proved that the power series ts umiformly convergent in
the region (¢, b). The boundaries of the region may extend as
closely as we please to the boundaries of the region of convergence.

22. Function defined by a power series. We shall now prove that
o power serics defines a continuous function of x for values of x
within the region of convergence of the serves.
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Any value of x in the region of convergence determines another
definite value; namely, the limit of the sum of the first » terms of
the series. This limit we define as the value of the function and

write f@)=ay+amx+ax®F a2+ - +ax*+---. (1)
It remains to prove the continuity of f(z). For that purpose

- let us write (1) in the form

f(x) = $n(96) + rn(x)y (2)

where s,(x) is an algebraic polynomial and r,(x) is an infinite
series whose vaiue is the difference between s,(x) and f(z).

Let x; be a value of z in the region s
of convergence and consider an in- 0 xi_g ;lejs'R
terval (z; — 8, a1 + 6) (Fig. 24). By Fic. 24

the property of uniform convergence,
if € is any assigned positive quantity we can take n so great that

()] < § for all values of x in the interval (z; — &, 21 + 9).

This fixes n in (2).
Now take x -+ & in this interval and form

J@+h) = su(x+ k) + ra(x + h), 6
where [ralx+h)| < 56
From (2) and (3) we have
S+ h) — [(x) = s,(x 4+ b) — 8,(x) + 7o(x + h) —ralzx). (4)

Now s,{x) is an algebraic polynomial and therefore continuous.
Hence h can he taken so small that

[8n(x + B) = 5, ()| < g

Then in (4)
@+ h) — f(x)] =|5,(x -+ ) — 82(2)|+|ra(x 4+ )| +|7a(2)];
that is, | fle +h) — f(x)| < e

This proves the continuity of f(x).

23. Integral and derivative of a power series. We shall prove
the following theorems :

I. A power series may be tnitegrated term by term.

We mean, speaking more precisely, that if (a, b) is an interval
in the region of convergance, then

b b 2 b
J{f(x)dx:fl aodx-l—fa,ocdx—l—----{-‘/;a,.x"dx-{-n-. (1)
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To prove this, write
b b . b
f flx)de = [ su(x)dx 4+ | ra(x)dzx. (2)

Now by the property of uniform convergence it is possible to
take n so great that for all values of z in the interval (a, b) .

) €
l'rn(x)l< b — a'
b b €
Then I f r,,(x)d:c{ < f de = e.
a @ b — a
b b
Hence in (2) f f@)dx = Lim | s,(x)dz,

which is exactly the meaning of (1).

II. A power sertes may be differentiated term by term.

We mean, speaking precisely, that if

J@)=a+ o+ a4+ faat -, @)

then the series a; -+ 2 ez + - - -k na 2" - - - 4)
converges in the same region as (3) and represents f'(x).

A simple proof of the convergence of (4) which is valid in mos
cases may be given by means of the ratio test (§19). For the
lirvit of the ratio of the absolute values of two successive terms

in {4) is the same as the limit of the ratio of two successive terms
in (3), namely, la

an I
so that if this Jimit exists and is equal to L, the region of conver-
gence of each series is 1
- Z <r< Z'

This proof fails, however, in the case in which L does not exist.
Therefore we need another proof. Let x (Fig. 25) be a value of ¢

lying in the region of convergence of (3) ' X
and let X be a quantity such that R 0 =z R
r< X < R. 16. 25

Since we are dealing with absolute convergence we may for
convenience take x, X, and the coefficients of (3) as positive.
Taking the nth term of (4) we may write

an

n—-1 N
nana" ! =n <2 (%) X", (5)
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But {— =r, a number less than unity, and it is easy to show by

the method of indeterminate forms that
Limnr"'=0whenr < 1.

Thetefore n can be taken so large that
/ T )n —1
n( X < X
and, from (5), na,x" " < @, X"

But the series with terms a,X™ converges, since X is in the
region of convergence of the series (3); therefore the series (4)
converges absolutely.

On the other hand, if x is taken outside the region of conver-
gence and X is a value less than z, then (5) shows that eventually

mnxn—l > aan :
and since the series with terms a,X" diverges, so does the series (4).

We have now in two ways proved that the series (4) converges
in the interval —R<ux <R.

Hence, by the first theorem, it may be integrated term by term,
and the integral is exactly (3) plus a constant of integration.
Therefore (4) is the derivative of (3).

As a consequence of this we may prove the following theorem:

HI. A function may be expanded into a power series of x in only
one way.

Let there be given

f(@) = a0 + a1 + a22® + azad + - - -
We form f@)=a1+2axx+3azx®+---,
f'x)y=2a:+3'asx + - - -, ete.;
whence 1

o =0), @ = J(©), 62 =5, /() -+, @ == 17(0),
and we have Maclaurin’s series. Sinee this determination of the
coefficients is independent of the manner in which the original
series was obtained, we have proved the theorem.
24. Taylor’s series. In the foregoing sections we have consid-
ered functions defined by means of given series. Conversely, if a
function is known, and known to be continuous and to possess
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derivatives of all orders, it may Le expanded: into a power series.
This is an extension of the work of § 7. We saw there that if f(x)
and its (» 4 1)st derivatives exist and are continuous, then

5@ = 5O + £ O+ + 1O Z 4 R, M)
_ T
where R= T 1)!f &). O<é<a)

Now if f(x) possesses all its derivatives, and they are continuous,
the formula (1) may be expanded indefinitely ; and if at the same
time |R| approaches the limit 0, (1) becomes a convergent
infinite series representing f(x).

For example, consider

A x3 . x2k+1
' smx=x———:i+---+(——1)(—2—k—_—}_——i—)—!~+R, (2)
/ p2k+3
where R z;{:mcos &
H !x2k+3|
ence |R|< m,

and whatever the value of |z!, the value of | R| approaches zero
as k increases infinitely. This is readily seen from the fact that

Eid
2k+4)2k+5)
and this factor approaches 0 as & increases. Hence (2) determines
an infinite series which represents sin x for all values of z.

It should be noticed that it is not sufficient to establish the
convergence of the series which would be obtained by dropping R
from (1), because this series may converge but still not represent
f(@). In this connection, consider |

fx)=e “.
If the value of f(x) for # =0 is defined as equal to the limit ap-
proached as x — 0, the function and its derivatives are continuous
and have the value zero when x=0.
Therefore Maclaurin’s series is
1

e ?=0+0+---+0+R. )

It is manifestly absurd to omit R and say that the resulting
series represents the function. In fact R is the value of the function

if k£ is increased by unity, | B| is multiplied by
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for a given value of # and does not approach zero as a limit when
the number of terms of the series is indefinitely increased.
1

*Again, consider flx)y=sinx +e¢ =
We have 2 b ’ , xRk
sinz + e =z—é—!+g—!——---+(-—1) 2hL 1 R. &)

If R is dropped from (4), there is left a convergent series which
does not have as its limit the function on the left of the equation.
In fact we have already shown that the series in question defines
sin z.

This example is, of course, exceptional. As a rule, if the series

5O + 2 (©) + 5 (0) -+ -

converges it represents f(x) for all values of x in the region of
convergence. This may be established for the elementary fune-
tions by discussing R as we have done in the case of sin z. This
requires obtaining the general form for the nth derivative of the
funetion, which in many cases is difficult or even irnpossible to
obtain. A more general proof may be given by use of the prop-
erties of the function of a complex variable (see § 147).

We have discussed the series expansion in the neighborhood of
2= 0. To expand the function in the neighborhood of x = x, we
have simply to place 2’ = & — 20 and proceed as before for x’.

Suppose, now, that the power series

o+ x4 a4 FaxtF - (5)

defines f(x) for x within a region of convergence (— R, R) (Fig. 26).
The series enables us to find the value of f(x) and all its derivatives

for x = 2 when 2 is in the region of -R' o R
convergence. Placing &' = x — xy, we s + 5 4 *
may obtain a new power series FiG. 26

ao’ + ay'z’ + a2’z + az'w’t - - o, (6)

which will converge in a region — R’ << o’ < R’. If this region
extends beyond the region (— R, R), we have f(x) defined for
values of z which lie outside the region of convergence of (5).
Again, taking z ‘ = 2’ — 2o we may form a series

(l»()” + alllxll _+_ 012”(13”2 + ce

which defines f(x) in general for still other values of x.
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In this way the values uf the function defined originally by a
series for certain values of x may be obtained for values which
lie outside the region of convergence of the original series.

25. Operations with two power series. We shall now show that
two power series may be added, multiplied together, or divided
one by the other, and the result is a power series which converges
when each of the first two series does and which represents the
sum, product, or quotient, respectively, of the two series.

Let oo+ oz + e’ 4 - a4 - -, 1)

bo + bux + box® + -+ -+ bux™ 4 -+, (2)

be two power series which converge for a given value of z, and let
(@o+bo) + (a1 +b)x+ (az+b2)a*+ - - -+ (@u+bu)z"+- - (3)

be the result obtained by adding the series term by term. We wish
to show that (3) converges and represents the sum of (1) and (2).

Let s, be the sum of the first (% + 1) terms of (1), s,.’ the simi-

lar sum for (2), and S, the similar sum for (3). Then

Sp=8n "" sn, ’
and since s, and s,’ approach limits, S, approaches a limit which
is the sum of the limits of s, and s,’.

Again, let (1) and (2) be multiplied as if they were polynomials,
thus forming the series

aobo + (aobs + a1bo)x + (aobz + aiby -+ asbo)x? y

+ (aobs - a1bz + azby + asho)x® + - - .. (4)

Let Sz, be the sum of the first 27 4+ 1 terms of (4), that is,
of terms involving all powers of x up to and including 2*", and
let s,, s,” be as before. It is evident that all partial products .
formed by multiplying s, and s,’ are found in S;,, but that Sz,
will also contain partial products not thus formed. These partial
products may be arranged as follows:

CLo(b,, + 1x"+‘ + + b;nx2n)

+ aw(br 1" + 1 + b2n ”'2" 1)

+ . : :

+ ap_22" Z(b Hx"“ + b +2xn4 23

+ dp_12” b, 4127 i (5)

4 @p 412 (bg 4 iz + - - - by 2™ TY)
"!’ (4% 4_2:1-714 2’b0+b1'€+ .+bn_2xﬁ—-2)

'*‘ (¢2) nxz ";)0
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Let the sum of the terms in (5) be represented by 6. Then
Son = 8,8," + 0. 6)

Since a power series converges absolutely, the absolute value of
s, 1s less than some finite quantity, say A, and the absolute value
of s, is less than some finite quantity B.

The parentheses in (5) are of two types. The first type is of

the form bps1@ 4 v ook by g2m (D

This is less than the remainder of (2) after the n 4+ 1 terms have
been taken in s,’. Hence, since a power series converges abso-

lutely, the sum (7) can be made in absolute value less than y :_ B

where € is any assigned quantity, by taking » sufficiently great.
The second type of parentheses in (5) is

b()+b1x+ e ‘+‘bn~kxn~kr

which in absolute value is less than s’,, and therefore less in abso-
lute value than B. Hence, from (5),

[8] < (ao+a1x+---+a,.-1x”‘1)A+B

+ @pprx® 4 - - - + a22®")B. (8)

Now, reasoning as before, the absolute value of the first paren-
Yhesis in (8) is less than A and that of the second parenthesis can
€

A+ B
is possible so to determine n that

|6] < e
Therefore, from (6), Lim S2, = Lim (s,8,':

In a similar manner it may be shown that

’

be made less than by taking n sufficiently great. Hence it

Lim S2,+1 = Lim (s,8,/).
Hence the proposition is proved.

That one power series may be divided by another follows from
the fact that division is simply a process to find a quotient which,
multiplied by the divisor, gives the dividend. A more general
operation is as follows:

Let ¥=F@) =ao+ a1z +a®+ - )
and 2=¢&) =bo+brx+bax?2+---. 10y
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Then y=flop@)]=F(x)
= ao + a1(bo + b1z + box® + - - )
+ az(bp + byx + box® + - - )2
+ as(bo + bix + bax? + - - )3 11).
4.

By computing the powers of the series for z and colleeting the
coefficients of the powers of * we may obtain in this way an
expansion of y in powers of x. In many cases the coefficients of
the powers of x will be infinite number series which can be com-

puted only approximately, but in other cases they will be exact.
For example, let us find log cos x.

. . x2 1t 28
Wel?ave logcosx=10g<1—é—!—+a_é_!+...>

=log (1 + u)
u? u®  ut
u—"é-+-3—-—z+ )
21:2 x‘i x6
Where u'—‘:——é—!—-}-i—i—a-{_..'

Hence xz rt 78 1 IE2 x4 26 2
‘°g°°”=<‘i‘a‘+‘z‘4‘7z‘o+"'>*é<~§+:zz“%+"')
1/ 2 z* 28 3
55+t )

=—-];x2—-x4—lx6+...

2 12 45

26. The exponential and trigonometric functions. By expansion
into Maclaurin’s series the following series are obtained :

2 3 "
e”=1+x+%+g—!+--.+%—!+---, 6))
) ' 3 5 . p2k+1
2 gzt ) x2k
—— — — — — . & & — LI AL (
cosx =1 2!+4! + (=1 (2k)!+ (3)

These series converge for all real values of x and may be taken
as the definitions of the functions concerned. It is true that the
series have been derived by a chain of reasoning which began with
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elementary definitions. For example, sin z and cos  have been
originally defined as ratios connected with an angle whose cir-
cular measure is . Properties of these functions are then devel-
oped both in elementary trigonometry and in the calculus leading
finally to the series above.

This process may be reversed. The series given above may now
be laid down as the definition of the functions, and all the familiar
properties may. be deduced from them. For instance, since two
series may be multiplied, it is not difficult to show from (2) and

(3) that sinxcosy -+ cosxsiny =sin (x + ¥);

and since a series may be differentiated, it follows from (2) and

(3) that

a .
—SINT=cosZx
dx ’

El-;cosxz-—-sinx.

This method has the advantage of giving us a purely analytic
definition with no dependence on a geometric construetion. The
connection with an angle becomes then merely an application.
This definition also makes it possible to speak of the values of
¢%, sin z, and cos ¢ when « has a complex imaginary value of the
form @ + bi where ¢ = \/— 1.

The study of the complex variable will be taken up in detail
in Chapter XV. Itisassumed now that the student has acquired
from elementary algebra the knowledge that a + bz may be oper-
ated on by ordinary rules of algebra, with the addition that 42 is
to be placed equal to — 1. Hence if we place x = a + bz in each
of the series (1), (2), (8), there result two series, one not involy-
ing 7, the other multiplied by 7, and these define e”*%', sin (2 + b7),
and cos (a + b7) respectively.
~ However, we shall be concerned in this section only with the
result of replacing x by =7 in (1).

Since P==1 B=—1i it=1,etec,
. x4 \ 23 b \
we have 6“-“:< +—~——---/+’&(l‘~-~;;--§--5—! o (4)
y \ B} !

= ¢08 X + 1 sin .

Similarly, we obtain
e %= cos x — @ SiL 2, (%)



HYPERBOLIC FUNCTIONS 55

From (4) and (5) follow immediately
sin @ = e————-zi —e™ cos X = ——————-————exi te™
T 20 7T 2
These formulas show a remarkable relation between the expo-
nential and trigonometric functions.
By the law of multiplication of series it is easy to show from
(1) the truth of the exponential law

T1pTy — pZ1t+ Ty
€712 = ™1t %2, 0

®)

- Hence we have, from (7) and (4),
e*t ¥l = ¢%¥ = e™{(cos ¥ + 1 sin y). (8)
From the formula (7) it follows that
(eez')n —_ e"si,
where n is a positive integer. Rewriting this equation in the
light of (4), we have De Moivre’s theorem ; namely,
(cos 8 -+ 7 sin 6)™ = cos nd + 7 sin n6. 9

This may also be verified for small values of # by actual multi-
plication and then proved by mathematical induction for n equal
to any positive integer. It is also true when = is negative or
fractional, but we will not go into this now.

27. Hyperbolic functions. From analogy with the sine and cosine
as given in (6), § 26, we may define two new functions, called the
hyperbolic sine and the hyperbolic cosine, as follows:

. et —e "
sinh z = R .
h x _ e:c _+_ e-— x ( )
cosh # = ———
Other hyperbolic functions are then defined by the equations
inh
tanh « = S e
sh z
1
coth x == P @
1
sech z = a}sh x»
1
ech r = ——-.
cosech r P
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The series expansions for sinh x and cosh z are then, from (1),

. x3 x5 x2k+l (3)
51nhx=x+§i+-57+...+m+...,

h 2 x4 x2k
cos x=1+é—!+a+-“+(2k)!+---- 4)

The hyperbolig sine and cosine are connected with the trigono-

metric sine and cosine by the relations )

sin ¢ = 7 sinh z, cos 7z = cosh =, (5)
which may be proved by replacing x by ¢z either in ghe formulas
(6), § 26, or in the series (2) and (3), § 26. '

It is clear that the hyperbeolic functions must satisfy relations
similar to those for the trigonometric functions. These may be
derived directly from the definitions (1) or by substituting from
(5) in the usual formulas of elementary trigonometry. We have,
for example, cosh?z — sinh?x =1,

1 —tanh?z = sech?z,

coth?z — 1 = cosech?® z,
sinh (x 4 ) = sinh z cosh y + cosh x sinh y,
cosh (2 + y) = cosh x cosh y + sinh x sinh y,

_‘Z_ sinh x = cosh z,
dz

;i% cosh x = sinh z, (6)

d
— tanh z = sech? z,
dx
and others, some of which will be found in the list of exercises for
the student. ‘
The inverse hyperbolic functions are defined by the equations
y=sinh~'x when =x=sinhy,
y=cosh 'z when =z = coshy, (N
y=tanh™'2 when = tanhy,
and similar forms for the other three functions.
From the equation R
x=sinh y = 5

we get eV — 2 e’ =1;

whence eV =zx+Va2+1,
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where only the positive sign of the radical is taken, since e? is
always positive. Hence

y = sinh~! z = log (z +Va2 + 1). ®)
In the same manner it may be proved that
cosh~! z = :I: log (x +Vaz—1), (9)
1+z z
-1 =
tanh™!'z = l og —— — (10)
From the equation ¢ =sinh y
we get " dx=coshydy;
whence l}_@[ ! !
dz~ coshy 1 + sinh2 y
d 1
that is, —sinh g =— 11
da V1+a? (1)

iwhere' the plus sign is taken for the radical when x is real, since,
from (1), cosh % is always positive.
Similarly, we may prove that

d 1 1
e cosh 'z =4 Ay ’ (12)
d _ 1
ix tanh™’ =17 - (13)
From the last three formulas follow the formulas of integration :
f —\/-;—g.mz__&; — sinh™! “; ) (14)
:/xgx == cosh™! 2» (15)
de 1 x o
faz —3 =, tanh™! P (16)
28. Dorinant functions. Let
(@) = a0 + a1z + azx? + - 1)
be a function defined by a power series, and let
P(x) = Ao+ Ar1x + Agx® + - - (2)

be a second function defined by another power series in which the
coefficients A, are all positive and such that

An > |anl. 6)]
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.Then the function ¢(z) is said to dominate the function f(z) in
the region of convergence of the two series.
" For a given f(z) there are an infinite number of dominant func-
tions. A simple one may be found as follows:
Let r be any positive nuwber in the region of convergence of (1).
Since (1) converges absolutely for x = r, there is some positive
number M which no term can equal or exceed in absolute value;

that is, Ianlrn"< M. @)
Consider the funetion
M M M
$p@)=——=M+—z-+= a2+ - ®)
z 7 T
1 —_——
r
This series converges when |z| < r and, by (4),
M
— >lanl
r

Hence ¢(x) is a dominant function in the region (— r, 7).

29. Conditionally convergent series. We have been concerned in
the previous sections entirely with absolutely convergent series.
It has been noted, however, that a series may converge even when
it does not converge absolutely. Such a series is called condition-
ally convergent. For example, consider tie series

I—d+h—f+d—t+--- M
The sum of the absolute values of the term of (1) is the harmonic
series (§17), which is known to diverge. Hence (1) does not
converge absolutely. However, it does converge as it stands. Te
show this let us plot on a number scale successive values of

SREPUS UF U R |
Sn=l-g+g—g+--+(=1 "

The appearance of the graph (Fig. 27) may be compared to the
swing of a pendulum, every s with an odd subsecript corresponding
to a swing to the right, every s with ‘ s,8 8 s
an even subseript corresponding to 0 1131
a swing to the left. Every swing in

. . . Y Fia. 27

one direction is less than the previous
swing in the other direction, since the numbers added or sub-
tracted are growing smaller. Hence sz, increases with » but
remains less than 1, and therefore sz, approaches a limit L.*

* See footnote on page 39.
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Similarly, sz, +1 is growing smaller, but is always greater than 4.
Hence s3,+1 approaches a limit L’. But
so that Lim|s,+1 — 8.|= 0 and therefore L = L’.

The series (1) is a special case of a general type of series of
importance for which we have the theorem

If in a series of alternately positive and megative terms each term
18 less in absolute value than the preceding term, and the absolute
value of the terms approaches zero as a limit as the number of terms
increases without limit, the series converges.

We have
ao—0o:+az—az+-- -+ (D" lag+ (— s+, (2)
in which the a’s are positive numbers with
Ons1 < @p, and Lim ¢, = 0.

7 - 00

The proof that this series converges may be given on the lines
on which the convergence of (1) was proved.

It should be noticed that the limit approached by the sum
of n terms of a conditionally convergent series may depend upon
the order in which the terms are arranged. Suppose A is any
arbitrarily assumed number, which for convenience we take as
pesitive, and let us arrange the terms as follows. Take at first
just enough of the positive terms in the order in which they
appear in (2) so that their sum exceeds A; then just enough of
the negative terms so that the sum of all the terms taken shall .
be less than A ; then just enough positive terms so that the sum
of all the terms taken shall again be greater than A ; and so on.
In this way s, is alternately greater and less than A, and it is
easy to see, since the terms are decreasing in absolute value, that
s, approaches A4 as a limit.

The limit of the sum of » terms of an absolutely convergent
series, however, does not depend upon the order in which the
terms are taken.

To prove this let

@o+ai+azt+oaz+---+ant--- @
be a series of positive numbers and let
bo+bi+ba+bs4---+by .- 4
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be the same series with the terms in different order, but.so that
each term of (3) is found somewhere in (4) and €ach term of (4)
is found somewhere in (3).

Let s, be the sum of the first m terms in (4). Then n may
pe taken so large in (8) that all the terms in s, are found in
the n terms of (3). Hence

T s, < A,

where A is the limit of the sum of the terms of (3).

Hence s,,’ approaches a limit which is equal to or less than A.

In the same way the limit of s, may be shown to be equal to or
less than the limit of the sum of the terms of (4).

Hence (3) and (4) converge to the same limit.

Since an absolutely convergent series may be considered as the
difference of two series of positive terms, the theorem follows.

(
EXERCISES

Determine the eonvergence or divergence of the following series:

o — e,

3 4 5 n+ 2

I SO AT AL S
92+2-3+3‘4+ n(n + 1)

1 1 1 1
101 3+5 7+9 11+ +(4n——3)(4n—1)

R +~+%+mu
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12. 1

itEtEt o tet
B 2 3 n
13'£+§%+% n(n3+1)+'
1*”@*‘%*"'*@’5‘1@“"
3 5 2n-y
15'2+%+°25—+"'+2_277:I+
1
16'2%1+23—-3+251-5+'“+§7;'—~T('2177—“17+“'°
2 23 2n
17.1?2+22t3+3_4+---+n—(m+---.
18‘2?5+3=152'+4-153+"'+@—~§i)—5;+
19.§+§—2+§§+ +£~,+
PRETETE W U T T

Find the region of convergence of the following series:

n+1

282,04 s ny..
21.x+5x +1Ox -+ +n2+1x + .
x3 xB ) x2k+1
- 4y (=DE 4.,
wr—gte T O e mt
. ) b2 bn—l
23.-1—+—11-x+——3x?+---+-~—x”“+---.
a a? a a®
., 22 32 n?
24.1+—é—x+—2—2x2+--~+2n__1:c Togoe,
32 2 3"—1 Mn—1
25.1+3x+2!x+ +(n—1)!'
-1 m—1)--m—k+1
ze.1+nx+1’i’-'-2-,——)x2+---+"" ’k,( dak ...
1 x  z? zn-t
27.§+§§+-2—§+ + o + e
r 1x® 125 n_l_i___x““ .
I T TR TR P T

22 18 pqprliB3:58- 002038
29.1—‘i'+r'21' + (=1 1.2.-83..-n~-1

2n—2+,,_
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30. Show that aot+ar+ast- Fa, .-
converges if Lim Va, <1 and di verges if Lim \’:/Z:*) 1.

n-— 0 n-> 00

31. Show that
Uo(2) + wi(x) + wa(w) + - - -+ u(x) 4 - -
where o), w(x), - -+, w2} are {unctions of (x), is uniformly con-
vergent in a region (a, b} if w convergent series of positive numbers
Mo+ My + My oo M+ -

can be found such that Ju ()} < M;
for all values of x in the interval.

32. If a+ag+agt A, HF -
is an absolutely convergent series, prove that

apsinr+aysin2as+---+a,sinnr4- -

is uniformly convergent in the interval (0, 2 ).

a8. Prove that
2 2 ol
T z
2?2 + + - U P S NS SN
1+22 1+ xH)? {14 2nm

is not uniformiy convergent in any interval which includes x = 0.

84. Prove that any series

() + uz2) + - un(m) -

of continuous functions #,(z) whica iy uniformly convergent in an
interval (a, &) defines a continucus function in the interval.

3b. Show that any series of continuous functions which converges
uniformly in the interval (@, b) may he integrated term: by term be-
tween limits which lie in that interval.

36. Show that any series of continuous functions may he differentiated
tertn by term :f the resulting series is one of continuous functions which
converges uniformly.

Show by consideration of R that the following series really repre«
gent the function und determine the region of convergence:

Y 7
87, =L bbb
21 n!

w i

z?  xt
88. ¢oB Bz Lo — +—-._...,5
41
«CS
30. 1 1+a)== ---——~+——-—~-.
og (1-+x)==2a =t 3
40. (1+w)"-=1+nﬂ'+f.(ﬁ%;.'r9£+...,

i
41, ——— = § - — DRIER
1422 o et —att
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EXERCISES 5

W)

Obtain expansions of the following functions by integration of a
series and determine the region of convergence:
T
42. 3in~' x =fz—~—q:~c——:- 42 tanlx = f dx .
0 /1 — 42 Jo 1 F 22

44. log (z + V1 +2%) ::f‘;”

S
VI1+z2?

Obtain series expansions for the foligwing integrals and determine
the region of convergence:

x" 2 z 9
45, { e~* dx. 46. | cos x” dx. 47.
A Sy

a —1

dzx.
01+ 2b

Find by combinations of elementary series already obtained expan-
sions of the following functions:

sin « sin~! z
48. tan r = ——- 52, ————-
cos x V1 - z2?
53. etinz,
49. sec v = cos z 54, g°08% = g . geOST—"
cos x 55. et3nr,
50. cot & = ——-- .
sin z 56 ez,
51. ¢° sec 2. 57. log (1 + sin x).
s . . e +e ¥V, .e¥ — eV
58. Show that sin {(x + 7y) = — sinx 41 B cos x.

89. Show that
v —~¥ eV — g~V

. eV 4 e . .
cos (xr + ty) = ——— cO08 T — 2 ———— 8in .
2 2

60. From formula (9), § 26, assuming that the real and imaginary
part3 of two equal complex quantities are equal, derive the formulas

__________n(nz-'- D cos®-2 sin28

i o 1)(7247 2)(r —3) cos” 40 sintf — - - -,

nin —1)(n - 2)
31!

61. Apply the method of Ex. 60 to find cos 36 and sin 36.

62. Apply the method of Ex. 60 to find cos 56 and sin 58.

83. Prove formulas (6), § 27.

84. Prove formulas (9) and (10), § 27.

85. Prove formulas (12) and (138), § 27.

86. Construct the graphs of sinh z, cosh x, tanh z.

87. Find formulas for sinh 2 x and cosh 2 z.

cos nf = cos™ 6 —

+

sin n0 = n cos™ 10 sin § —

cos™® ~%0 sin®0 4 - - -,
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68. Find formulas for sinh g and cosh g

69. Prove that
sinh (z + 7y) = sinh x cos ¥ + ¢ cosh z sin 7,
cosh (x + 7y) = cosh x eos y + < sinh z sin y.

70. Show that if ao = 0 in (1), § 28, the function

M _u
1-7%
) r
is a dominant function.
71. Show that in (1), § 28,
&)
[ra(@)]| < M ~T—.
1-2%
.

72. Show that the series
1 1 1 1
—_———=t—=——t - (=) —=+
Ve V3 Vi Vn
converges conditionally but not absolutely.
73. Show that the series )
U t+ugt+uz+--t+u, +00y

ar  gin o
where u, = f dx,
hid (n-Un g

1

converges.
74. Cauchy’s integral test. If the terms of a series
a1+az+az+ - -+a,+---

are all positive and decreasing, and if a constantly decreasing function
f(x) can be found such that f(n) = a,, show that the series converges if

R
the integral j; Sf(x)dx approaches a definite limit as B —- o0 and diverges |
if it does not.

75. Apply Cauchy’s integral test to the series .

1 1 1
e
2(log _2}”+ 3(log 2)7 +n(log ?.)7'+

76. Apply Cauchy’s integral test to the series
cot™'1+cot7!24cot™ 34,



CHAPTER III

PARTIAL DIFFERENTIATION

30. Functions of two or more variables. A quantity f(z, y) is a
function of two variables if the value of f is determined by the
values of x and y. The values of x and y may be represented in
the usuél way, as codrdinates of a point on a plane. Then to
every point of the plane is associated a value of f, and we may
speak of the value of f at a' point, (z, ¥) as a convenient way of
saying the value of f for the number-pair (x, ). This manner of
speaking may have a physical meaning; as, for example, if f is
the intensity of illumination or electric potential at each point of
the plane. The method is useful, however, when there is no
physical meaning of the function and it is simply an abstract
function.

The funection f(x, y) is continuous at a point (a, b) for which
it 18 deﬁned i Lim f(x’ y) :__f(a’ b) (1)

L
independently of the manner in which z approaches a and y
approaches b.

As an example of a discontinuity, consider

2 2
?:_2 yz' @)
z°+y
The funetion is not defined by (2) for x = 0, y = 0. It is in order,
therefore, to complete the definition of f(x, ) by assigning to it a
definite value A4 for x = 0, y = 0. It is not possible, however, so
to choose A that f(x, ) is continuous at (0, 0). For let (x, y)
approach (0, 0) along the straight line y = m«; then along this
line o 1 — m?

f("’": (’/‘) - 1 + m2

and by changing m the funétion on the right may be given any
value whatever. Hence f(z, ) will not approach A for all ways
in which z—» 0 and y — 0. Hence f(z, y) is not continuous
at (0, 0).

fz, y) =

12

66
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The definition of continuity may be more explicitly given as
follows: Let € be any assigned positive number no matter how
small ; then if f(z, y) is continuous at (a, b), it is possible to find a

number 6 so that |f(a+h, b+ k) —f(a, b)| < e

for all values of & and k for which |k| < 4§, [k| < 6.
Graphically this means that it is possible to surround (a, b) by a
square of side 2 § (Fig. 28) so that for all points in the square the.
difference between f(x, ) and f(a, b) Y
is less than e.
A quantity f(z, y, 2) is a function p4gf-——ooo.. _
of three variables z, %, z when its ,((;, b)
value is determined by these vari-
ables. We may interpret (z, ¥, 2) as ;_g|.
coordinates of a point in space and i
speak of the value of f at a point. E
i
i

Then f(z, y, 2) is continuous at a point
(a, b, ¢) for which it is defined if o e

Lim f(z, y, 2) = f(a, b, ¢)
as (z, ¥, 2) appr%aches (a, b, ¢) in any manner whatever. More
exactly : If € is any small positive number, f(x, y, 2) is continuous
at (a, b, ¢) if we can find another small number § so that

[flat+h, b+k c+1)—fla, b, e)| < e
for all values of &, k, and [ for which |h| < 6, [k]| < 0§, |I] < @.

Geometrically this means that we may surround the point
(a, b, ¢) with a cube of side 2 6 such that the difference between
f(z, y, 2) and f(a, b, ¢) for all points in the cube is less than e.

Similar definitions hold for a function of four or more variables.

If f is a function of any number of variables continuous at
each point of a given region, theorems I-IV of § 2 remain true,
with the word ‘‘interval ”’ interpreted as meaning a square in
two dimensions, a cube in three dimensions, and so on.

31. Partial derivatives. Given f(x, y) we may hold y constant
and allow  to vary, thus reducing f to a function of z only, which
may have a derivative defined and computed in the usual way.
This derivative is called the partial derivative of f with respect

to « and is denoted by the symbol of f, or o or <ﬂ> Thus, by‘
v

. - ax dx
definition,
efinition ; ~§Z=<ﬂ> o Lim L&Y — @) 1)
z = ox dz/y  h-o h

+ pem———

S
©2

[} "ESNRPIPIN G
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Again, by holding x constant we make f a function of y alone,
the derivative of which is the partial derivative of f with respect

to y, __(df . f@y+k) —f=y)
fv=73,= <dy> Liro 2 ' @

The theorem of the mean obviously holds for each of the par-
“tial derivatives; that is, using the form (3) of § 6,

fx+h,y) =fx, y) +hfalx+ 6k, 9), 0<b <1) ()
f, y+k) =1 9 + k@ y+0:k), (0<60:<1) )
and, by combining these two,

f@+hy+ k) =fy) + 1@+ 0k, ) + k(= b,y + 62k). (5)

If f(z, y) has partial derivatives for each point of a domain, those
derivatives are themselves functions of x and y and may have par-
tial derivatives, which are the eecond partial derivatives of the

. 0f> of\ 0 [(9f\ ¢ / of

tion. We have then — () <> )
function v n ox <9'c oy \ozx o ﬁy \(9?4,
but, as we shall show presently, if f(x, ¥) and iis derivatives

0

g; ahd 5—?—{4 are continuous, the order of differentiztion is imma-
terial, so that the second partial derivatives are three in number,
expressed by the symbols

o (of\_ oY _

a (f)x) d.l: frx;

0 af) o [ofN _ 9 _ .
8y<c'x oz dy) T oz 8y—f’”” ®:

___<of> 82’
oy \ oy oy?

Similarly, the third partial derivatives of f(z, %) are {our in
number ; name}y*

0% ) ;f
89: \dx oxs’
, 82 0 ! D2f az ) a;-;,-
o0y \ oz or\ox oy) ox*\oy/ Ox° oy
PEN=2 (P
ar (\&e”‘/ T oy Kc‘r oyl ot ¥ E) T ir oy
4 (334‘.\ _9Y,
gy ay’&’/ a' 3
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p+q

o0x? 0y*
f(x, ¥) p times with respect to z, and ¢ times with respect to'y,
the order of differepntiation being immaterial. The extension to
any number of variables is obvious. ’

Similarly, we have partial derivatives of any orders of a func-
tion of any number of variables.

32. Order of differentiation. It remains to prove the statement
that the order of differentiation is in general immaterial. We

shall denote _@(&f) by f,. and -a—<»a—[> by f., and shall first prove

So, in general, signifies the result of differentiating

oy\ox 0x\ oy
that if f has derivatives f,, f,, fyz, and f;, which are continuous at
the point (a, b), then
point (4, b) Feu(@, ) = fia(a, B). 1

For that purpose consider the expression
_flath btk —fla,b+k) —flath b +f(a b)

I n 2)

and in the first place let
fx+h, y) — f(x, y) = F(z, ). 3)
Then - Febt ';&)k" Fa, b) @)

By hypothesis f(z, y) is continucus and has continuous deriva-
tives, so that F(x, ) has the same properties. Hence we may
apply the theorem of the mean to (4) and have

[= Fyla, b+ 60:k) f,(a+h, b+ 6:ik) — f,(a, b+ 6:k)
- k - h

By our hypothesis we may apply the theorem of the mean
again to (5) and have

(5)

I =fxy(a+ 02h, b+ 0k). (0<8y,6:<1) (6)
Again, let us place  f(z, y + k) — f(z, y) = P(z, ¥). )
Then (2) gives I= Slath l;z)k_ ®(a, b). (8)

Applying the theorem of the mean, we have )
®.(a+ O3k, b)  f.(a+ O3h, b+ k) — fo(a + B3h, b) .
k k
and, after again applying the theorem of the mean, .
I=fy(a+ 0sh, b+ 64k). (0 <63 04 <1) (10)

I

9)
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From (6) and (10)
fzy(a' + 02h) b + 01]6) =fuz(a +‘ 03h, b + 64’5) (11)

Now let h — 0, k— 0. Since by hypothesis f,, and f,, are
continuous at (a, b), we have, from (11),

fxu(a) b) = fy:(a» b)r (] 2)
which was to be proved.

From this result the statement that the ordeér of differentiation
is immaterial for any number of differentiations or variables read-
ily follows, of course with the proper assumptions as to continuity
of the functions involved. For example, since

aoloe) =2 )

we have, by replacing f by %,

XY R
oy ox \ox) ox oy\ox/)’

and again, interchanging the order of two differentiations,

29 (ﬁ) _29 @)

ox oy \ox) ox ox \oy/)’

o3f B o%f B 23
oy 0x®  Ox oy ox  ox’ oy

83. Differentiation of composite functions. We shall consider in
this section a function of any number of variables z, y, 2, - - -
when z, y, z, etc. are functions of other independent variables
T, 8, & .-,

The number of variables in each set is immaterial. For defi-
niteness, however, we shall consider

J(z, v)
and fix our attention on some one of the independent variables,
say ¢. If tis given an increment At, then z, y, and f receive incre-
ments Az, Ay, Af, and
Af = f(x + Az, y + Ay) — f(=z, ¥)
_-_—.?iAx-{——a—f-A + e Az + €2 Ay 1
ox oy v ea 259 '

whieh is obtained from (5), § 31, by writing & = Az, k = Ay and
noting that the coefficients of h and k differ by infinitesimals

so that
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from f, and f,, respectively, under the hypothesis that these
functions are continuous.
Divide {1) by At and take the limit as At — 0.
if i iz the only independent variable,
. Af df . Ax  dx
Lim — = -, Lim — = -, ete.
At_»r? At dt Az}g)\ At dt ete.,
df #fdx  of dy
A At Tl N
and we have a-ma oy (2)

If, however, there are other independent variables besides ¢,

. Af__ of . Az 0oz
LimG=7r Lim5 =7 et

, y_noe, oe \
and we have Friade ey + = y ot 3

if we diferentiate (2) with respect to ¢, we have

. d“f 0f>d3‘ of d’x <3f }‘_]}f ) .8i gj’ 4)
dt< dt @

25 dt\ox/ dt ' ox di? oy/ dt oy di?

Now —a{: is a function of x and ¥, and therefore (2) may be applied,
e

with f replaced by ?)i Then we have

d /0f) 0* fdx+ 0%f dy
ai\oz) = 9 & " oz oy @
d /8f> o} dx 0% du
“dt \By oz 0y dt _655 dt’
Substituting in (4), we have
d2f 82'“(@3:\“‘ o%f dxdy 0% [dy\? of d*x c’fdzy ,
= wi\a) Yooy a T e\ +a_a£2it7 Foygar O
Similarly, starting with (3) we get, when = and % depend upon
s and ¢,
212[: o*f (m) 9 82f o0xdy 0°f <6y> gf)_zf_l.g@ ®)
22 ox*\ot) T “oxoyot ot oyP\ot) " ox o2 ' oy o2
wa LL Pt B (onoy o) 0 v
ds ot 0x% 0s ot Ox Ay oy? 0s ot

Similarly,

s ot ot Js
of P’x  of P )
gt 0s 9t oy 0s ot

(hviously (7) reduces to (6) if s = 1.

+
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In a similar manner expressions for the third and higher deris

tives may be found.
We shall consider special cases of importance with changes i

notation.
CasE 1. f{u), where u = &(x).
Here formulas (2) and (5) take the following forms

gy 2

1 ‘du\t o du
w.,._ —_ f// (____) _}_‘ ff{u\l —;——5.
dx du
dh,

Case I1. f(u), where v = gz, ¢
We have, from (3), (b), (6), and (7,

- ﬁml '(3.,;
y a, gy
Pl ] o $) Sy
¢ ) ar [ / el
o0* ) Fou? *u
e A )N Gl I S D Bt
ox* 7 ) (J:tv} T ox?
o= éu ou 4w &4
1) = = A f{u) -
ox oy - ) ox iy dx By
or N D 2
0% cu\? o%u
== ) {5 )*i"l'?f/“':’
17 \ Y, T
. . ¢ { @
As an example, let it be required t¢ show that f(x~ + ¢, sat
of 0 .
J 0. We place v = z% -+ y°. Then

.__.ﬁ___‘c______

isfies the equation
f(@? 4 9%?) = f(u) and, ,‘_'iom the equations given ahove,
of of
== Quf(w), —=24yf(u);
Fw f( oy yf' (u,

whence the required result follows.
Case II1. f(u, v), where % = ¢ (), v = ().
Formulas (2) and (4) may be written with u change ol @ to ¢

ytowv,and ¢ to x.
), == ( In- ~
o B 0

Casg IV. f(u, v), where u = ¢(x, ), v = ¥ (x, 1) ™
Formula (3) with a slight change of notation gives us P and P .
24

s AV 72
j; and %—};, and formula (7) gives a}:ay

formula (6) gives =%
ox*

(5]
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As an example, consider f(xr — ¥y, ¥ — x) and place u =z — y,
v=1y — z. Hence, from (2),

of _o _of
ox ou ov
Qi___i 2
oy +dv

* from which it appears that f(x — y, ¥ — x), no matter what the
form of f, satisfies the equation
of o _
o dy -
Again, consider z = fi(x + at) + fo(x — at) and place u = z + at,
p=1r — at. Applying (6) we have
0% _&h &
ox: du® ' do®’

Pty 2 h,
whence it appears that z satisfies the equation
0% 0%
o= ot

Case V. An important application of Case IV oceurs when we
have a function f(x, ) in which we wish to replace xz and y by
polar codrdinates » and 6, where

z=rcosf, y=rsinb. 8)
Then f becomes a function of r and 6 and, by (3),
of of ox of oy 6f of

oo Togar a0 Tyl "
of ofox ofoy_ o o
56" ar 50 Tagoe = gm0, co80.
By solving these equations we obtain
o 8 o dsnd
i T a0
8}' “ ?f of cos 9. '

P .
a0t e
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These last equations may also be obtained directly from (8),
written in the form

o _ofor 0f96_of = o v
or Orox' 900w Or~zP 42 002+ 9P an
o _oor o0 _of y U = /
oy oroy 00y or~zitgr 02 +yF
where to get 21:» ?L QQ Qf
g oxr oy oz oy
we write r = Va2 4 92 6=tan—-lg.
Again, by use of (6), we may get
o*f 621‘ o2 o*f . % .,
6r2_32 0+23 ycos@smﬂ-}—ayzsm 6,
0 _ 20 . 0°f o’f .
262 r? p — sin®6 — 2 r? P aycos 6 sin 0 + r? ayzco:s 20
—ré'fcosﬂ—rgsin 6
o0x oy !
azf 62j :c2 2f Ty —a—if_ y2
ou? orta+y? Br 90 (22 +y*) 962 (2? + ¢?)?
2
Y_v__ 4ol _mw
or @*+9°)" 00 (& +y)’
FI_B L w P
oy> or’z? 4 y? or 06 (x> + yz)’ 067 (x2 + y?)2
2
U
or (x> +y%* 00 (x*4y?)?
In this way we verify the important relation
2 2 2 2
3f2+i£__5_f 107 19, 12)

oy? or? 2 66° " ror

34. Euler’s theorem on hemogeneous functions. A function f(x, y)
is said to be homogeneous of the nth degree in x and y if the mul-
tiplication of x and y each by a factor A multiplies the function by

N*; if, symbolically, f(\z, Ny) = Mf(x, 9). (1)
Thus 2% — 3 2y + 4 ? is homogeneous of the second degree,

v
Vz? 4 y? is homogeneous of the first degree, and = =3 Y, ¢* are
each homogeneous of the zero-th degree. z+y
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Euler’s theorem in its simplest form is as follows: If f(z, y) is a
homogeneous function of the nth degree, then

of of :
xax+yay~nf- (2)
To prove this differentiate (1) with respect to . We have,
placing v = Az, v = Ay, and applying (2), § 33,

. R n—1
x u—!—y n\* Y. 3)

This is true for all values of \. It is therefore true when A = 1.
Substituting A =1 in (3) gives (2), which was to be proved.
Differentiate (8) again with respect to \. We have

0 0\? ne2
(= 2 4y 2) r=ntn— 1,
and, placing A =1 (x£+y—a—>2f=n(n—1)f. 4)
’ " A" ox oy
So by successive differentiations we have
0 o0\*
(rmtup)i=ra—D - @=k+1L )

These results may obviously be obtained for any number of
variables, so that we have as the general form of Euler’s theorem

0 k

(rgtvgtegt )I=nn—D - @—k+D1f ©
35. Directional derivative. Let P (Fig. 29) be any point of the

plane at which f(z, ) is defined and y

has partial derivatives o and ij

ox oy

Draw any curve PS through P, take

Q any point on PS near to P, and

let PQ = As, where s is the length of

the curve. Let Ax and Ay be the

increments of xr and y corresponding 5 y

to As, and let Af be the change in f Fic. 29

as (z, ¥) moves from P to Q. Then Lim %I is the rate of change
of f along the curve PS. Also as-0 A8

Ax dx:cosa, Limé—q=d—y=sina,
Ag— 0 AS ds

X
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where « is the angle which PT, the tangent to PS at P, makes
with a line parallel to OX. But from (2), § 33,
U_ofds oy o

ds ords T oyds oz T, @)
of

It appears that if the point P is fixed and therefore é—f- and — 8y

are fixed, the value of Z—‘Z depends on the angle o and not on the

equation of the curve PS. Hence (1) i§ called the diréctional
derivative of f in the direction c.

As « changes, P being fixed, the directional derivative changes.
Therefore we may write

gj: cos a + _81 sin « = F(a).
ox oy o
When o = 0 we have F(0) = °i
and when o = % we have F ( f—) =
of of
That is, P and 7 are the rates of change of f paraliel to OX

and OY respectively.
The directional derivative is zero when
of of .
F(a) =~ cos a -+ ——Jf sina=0;

cx oy
g
. cx ,
that is, when tan ¢ = — -=—- (2)
o
oy

This determines two wvalues of o, a1 and oy + 7, differing
by 180°. Between these two values there must be, by Rolle’s
theorem, at least one value of «, say a2, for which F(«) has its
maximum value and

A A
of . of
F’(Olg) =z — —_"j: SIn @y - = COS (@2 == 0;
' ox oy
of
A
oy ’ a9
whence tan ap = '(;7-; (33

ox



76 PARTIAL DIFFERENTIATION

An easy substitution from (8) in (1) gives

From (2) and (3) it follows that
tan a; tan ae = — 1,
and therefore the directions «; and « are at right angles to each
other.

We may interpret these results geometrically still further. Let
us imagine that we have marked on the plane of (z, ) those points
for which f(x, ) has a constant value ¢. By connecting such
points we have a plot of the equation

flx,y)=¢c

which will be in general a continuous curve.

Let the same thing be done for the equations

f(xr ?/) =c, f(x; y) = C3.

The plane is then covered with a set of curves called contour lines,
along any one of which f(x, ¥) has a constant value. Thus, for
f(z, y) = 2® + y? the eontour lines are coneentric circles 22 + 2 = ¢,
and for f(x, y) = xy the contour lines are the equilateral hyperbolas
xzy = ¢. The expression “contour lines” is borrowed from a topo-
graphical map, where such lines give the projections on the plane
of the map of points at which the height
above sea level is constant. Along a con-
tour line the rate of change of f is zero.
Hence the angle oy determined by (2) gives
the direction of the contour line.

Suppose now we take two contour lines,
and let the difference between the values
of f on the two lines be Af. Draw a curve
PN (Fig. 30) perpendicular to both lines and any curve PS mak-
ing an angle ¢ = SPN with PN. Let PN = An and let PS = As.

Then, by § 18, An = As cos ¢ + ¢,

where e is an infinitesimal of higher order than As. Now Af is
the same, whether taken along PN or PS. Hence

Af _Af '
As“‘ An cos ¢ '+' €1,
. . af _df '
and in the limit 2s = dn cos ¢. ®)
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This shows that (E < Q_j_’ and therefore gj» is the maximum rate
ds ~dn dn

of change of f at the point P. Therefore the direction of PN is
the angle ez given in (3).

. of df X

As special cases of (5) B = dn cos «, (6
of _df

oy dn sin «, (7)

and therefore ( 8x> +<k)y =\gn)’ (8)

.. df . .
which agrees with (4). The quantity E—f is called the gradient of ;.
To sum up: "
The gradient of a function of x and y s the maximum rate of
change of the function at a poini. It takes place in a direction normal
. . Il of\? ( of\?
to a contour line and is equal to \[<%> + %) .
"The extension to a function of three variables f(x, y, 2) is obvi-
ous. We construct in space the contour surfaces

f(z, ¥, 2) =¢,
along each of which f is constant. We may use Fig. 30, interpreting

PN and PS as drawn between two such surfaces, PN being normal
to both. Then, as before, af  df

Y _ 4 9\
s dn"> ¢ ®
showing that 3—‘ is the maximum rate of change. Special cases
" of (9) are ' af df
52 = a5
of df ,
od_d s, i
oy = dn cos (3 (10)
of df
9z an T

where «, 3, v are the angles made by PN witi the axes of z, y,
and z respectively. Then

OG- @

since cos? a + cos? B+ cos® v = 1.*

* The student to whorn this relation is not familiar will find a demonstration in ¢ 45,
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The gradient of a function of three variables is the maximum rate
of change of the function at a point. It takes place in a direction
perpendicular to the contour surfaces and is equal to

OfNy (Of VP (OF\?
N+ (3)+ (2
36. The first differential. Considering a function of two vari-

ables f(z, y), let = take an increment Ax =k and y an increment
Ay = k. Then f takes an increment Af, where

a
fA x4+ fAy—f— €1 Az + €2 Ay, (@9)]

Af =

as has been shown in § 33.

The third term here is in general an infinitesimal of hlgher
order than the first term, and the fourth term is in general of
higher order than the second, but there is no means of comparing
Az and Ay as infinitesimals.

However, we shall take the first two terms of (1) and call them
the differential of f, writing

&= e +afA @

We now complete the definition of df by saying that if x and y
are independent variables,

dz = Az, dy = Ay. @
Then (2) takes the form
df = f f dy 4)

Expression (4) is called the total dlfferentlal of f(z, y).

The methods and results of this section may obviously be ex-
tended to functions of any number of variables. For example,
for f(x, y, 2) 3 2

df = +8 +5

This definition has been based upon the assumption that z
and y are independent variables. We need to examine the cases
in which this is not true.

We consider first the case in which

z=¢:1(}), y= p2(0),
so that - Sz, y) = FQ).
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Here ¢ is the independent variable. Hence, by § 14;
dit = At, dx = ¢$:/(t)dt, dy= ¢2’(t)dt, dF = F’(t)dt. (6)

But, by (2), §33, F/() = 5 Lo +3 2 s:0.
Multiplying through by dt and applymg (6), we have
dF = df = f dx + ;—f dy,

which is the same form as before.

Again, let us suppose that x and y are functions of three inde-
pendent variables u, », w. Then f is a function of these same
variables. From, (5), since'u, v, and w are independent,

9 31/ By
dy = (9 d?l—f—a dv + (8)
_U g Y _.f_
& = dut Dot Law, ©
But, from (3), §33, 2 =209z 2/ 2y,

ou Oxou oyo ou’
of ofox  of ou
o0 0x v By o’
_8_]‘ 3f ox  of oy
ow 0z 0w 3y'55;"

Substituting in (9), we have

of <ax o o ) of <ay oy )
4= ox 6ud+ d+ d +dy8ud+ d+ d\’
whence, by (7) and (8), df = afd +§]:d

oy

again the same result as before.
It is clear that the results obtained are independent of the
number of variables involved, and we have the following theorem :

I. The differential of a function f(x, y, 2, - - -) 18 always

8}' df 0 f

whether z, y, 2, - - - are mdependent mmables or not.



80 PARTTAL DIFFERENTIATICN

We shall lext prove the following theorem :
IL If f(z, ¥, 2, - - =) = ¢, where ¢ s a constunt, then df = 0.

The relation f(x, y, 2, - - -) = ¢ cannot exist when z, ¥, 2, - - - are
independent variables unless it is an identity. We will therefore
suppose that z, y, 2z, - - - are functions of independent variables
w, 7, W, - - -. By substitution f becomes a function of », », w, - - -
which is necessarily an identity, and, by I,

af = Qf—d1+gfdv+%dw+---.

Buf sinee u, v, w, - - are independent variables, © may be
changed without changing any of the others or the value of f.
Therefore fu, v, w,---)=c,

S+ Au, v, w, ) =,
and f(u+Au’ v"w’..')-“f(uy'v; w,-"')=0; .
whence _01 = Lim j_-(,u + Awu, v, w, - ) — flu, v, w, - - ) —o.
t Au 0 Au

”f of

In a similar manner — =0, — =40, --.,

cw
and hence df = (. Therefore, by 1.

0 0 0
df = dot Zay+ 7
It is important that the student should understand just what

is meant. Consider, for example,
f,y,2) =2*+y*+2*=d?,

which defines a sphere in space. Here z, y, and z cannot be inde-
pendent variables, and evidently
o o | of
oz ay—2y¢0, az—~22=;£=0.
But z ¥, 2 can be expressed in terms of two independent vari-
ables % and v, where

a’-’r—

=2x+#0,

x=acosusiny, y=asinusiny, z=acosu.
Then ‘

f(x, y, 2) = (a cos u sin 2)2 + (a sin u sin )2 + (a cos v)? = a?
3f —0, of

is an identity, and 2o
n identity, an P e 0
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of of

Hence 8—udu+5;dv=ﬂ
for all values of du and dv, and
o g W W
Bxdx+3ydy+ ,dzdz-()

for all values of dx, dy, dz which are consistent with the given
equation.

III. If by any means we have found that
p df=X1dx1+X2d12'+—"'+X,,dxn,

then X;= pot where the partial derivative vs to be taken under the
%

assumption that all variables except x; are constnt.

The proof is simple. If all variables except z; are constant, all
differentials dxj; = 0 except for k=1, and the above equation

becomes df = X;dx;;
Y _
whence Xi= dz. - o

Tt does not follow, however, that any expression such as
Xl dxl + X2dx2+ ot + Xndxn

which may be written down is equal to the differential of some
function. In this connection we will prove the following theorem :

IV. The necessary and sufficient condition that an expression
Mdx + N dy,

where M and N are functions of x and y, should be the exact differ-
ential of some function f(x, y) ts that M and N should satisfy the

equation- oM ON
' DR (10
Suppose, first, that M dx + N dy is an exact differential, so that
we have df = Mdz+ N dy.
_u 2
Then M= axr N = ay’
2
and oM __ _of _ 9N

oy oJxroy oOx
so that condition (10) is necessary.
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Again, let us assume that (10} is satisfied and we wish to show
that a funection f(z, ) may be found so that
of
Do, Y
ox oy
To do this we may first integrate M dzx, regard y as constant,

and have
fM dr = ¢(x, y).

We now write  f(x, y) = ¢(z, y) + ¥ (), (11;

whéte Y (y) is a function of y ounly, and we shall show that it is pos-
sible to determine y so that f is the function required. From (11),

of - of 8d)

= N.

w= M 5= - + ¥v' ),
which must equal N. o
Hence V' (y) =N — w (12)

This equation will be absurd unless the right side is free of «z,
since the left side is free of x by hypothesis. The condition for
this is that the partial derivative with respect to x should be zero;

that is, that ON 8M
=¥ _ 2 1 dx
oxr  ox (’z, oy [axf M ]

which is exactly (10). Then (12) will determme Y(y) and
{11) will determine f. Hence the condition (10) is sufficient.
Extending this to three variables, we have the theorem:
V. The necessary and sufficient condition that
Pdc+Qdy+ Rdz
should be'cm exact differential is that P, Q, and R satisfy the equations
e do_or R g
’dy o 0z oy ox 0z :
In the first place, if
Pdr+Qdy + R dz = df,

o LY o
then P = axr = By' R = Bz

whence equations (13) immediately follow.
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Again, let the conditions (13) be satisfied. Then, by theorem IV,

where ¢ is a funetion of x, y, z and 2 is to be regarded as constant.
We forin the function

fx, 9, 2) = p(x, y, 2) + ¢ (2) (14)

and shall show that ¢ can be determined so that f is the required
” ,
function. From {(14), é’iz P, ;a—]: = @, and we must have
ox oy
o o
—=—+4y'(2) =R,
0z 0z T )8
80 that V@) =R ——— (15)

0z
This equation is a contradiction unless
0R  9°¢ OR 0 <§_d_>\ _6R 9P
e oxoz ox oz\ox) ox oz ’
9B 09 ©OR 0 /&(f)) OR 0Q

oy  oyox oy oz\oy) oy oz
But these are just the conditions (13). Hence (15) determines
Y(z) and (14) gives the required f.

It is to be noticed that it is possible to have in applied mathe-
maties expressions of the type

dw = M du + N dv,

expressing relations between infinitesimal increments dw, du, and dv,
where M and N do not satisfy the condition (10). Then w is not a
funetion of w and v, the partial derivatives of which are M and N.
For example, if H is the heat, U the energy, p the pressure, and »
the volume of a gas, a small amount of heat dH added to the gas
causes an increase dU in the energy and does an amount of work
P dv in expanding the gas, and we have

dH = dU + p do.

The right-hand side of this equaticn does not satisfy (10), since
p is not constant. Therefore H ig not a funetion of » and U in the
sense that it is determined when » and U are given. In fact, the
amount of heat in a gas depends not merely on its present state
but on the manner in which that state has been reached.
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Again, suppose a force with components X and Y applied to a
particle. Denote by dW the infinitesimal amount of work done
by displacing the particle from (z, y) to (z -+dx, y+dy). It is
easily shown that OW = X de+ Y dy,

but it does not follow that W is a function of z and y. In fact,
that this may be so it is necessary and sufficient that the force
should be such that

These equatiohs are satisfied by many of the common forces.
Such forces are called conservative. But other forces, of which
friction is an example, do not satisfy the condition.

These statements do not econtradict theorem III, since it is
there assumed that f is a function known to exist.

37. Higher differentials. We have

df = —i dr + 2 ——f- ey
whence d(df) = d<§f> df d2 x + d(af>d + gj: )
From (1), replacing f by ,(“r 8f’ we have
dr 0y
af _ f_f 8“’f
d(a Rt e
ay_ 32f
d<by> Cox oy SRR
Substituting these values in (2), we have
Z 2
d"f—-—f 2+2a o dx dy +gfdy +afd2x+af 3)

Equation (3) does not define d?r and d°y. If x and y are func-
tions of other variables, say r and s, then an equation similar to
(8) would give d%xr and d%y but leave d* and d*s undetermined.
It is therefore necessary to define the differentials of the inde-
pendent variables, which we shall do as in § 15; namely,

All differentials of the independent variables higher than the first
are taken as zero.
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Hence in (8), if x and y are independent variables, the last two
terms disappear; but if  and y are functions of other variables,
these terms must be retained.

Expressions for d"f (n>2) are readily formed in the same way.

38. Taylor’s series. We wish to extend the results of §7 to
f(z, y) under the assumption that at (a, b) the function f(x, y) is
continuous and has continuqus partial derivatives. Let us place

r=a-+ht,y=>b+kt,
where a, b, h, and k are constant and ¢ is a variable. Then
f(x, ) = fla+ ht, b+ kt) = F(t). 1)
Then, by Maclauri¥s theorem, .
1 9) = FO + PO+ P/ O) g4+ FPO S+ R @)
By (2) and (5) of § 33 we have

FO=pZeZ=(h 4o,

or oy ox oy
17 azf azf 2 f < _?_ £>2
Fl'(t) = +2hk8 +k h6x+k3y f

where the meaning of the symbols on the right of these equations
is obvious. Similarly,

B, Oy s O 0y
F }(t):-:hs +3hk?} Tog + 3 kk B,By2+k %
0
<h5.+k3y>f 5 9\n
. (n) —_ —_— —_
So, in general, FM () = (h p +k By> f 3)

This may be proved by showing by direct differentiation that
if (3) is true for any value n =k, it is true for n =k + 1. Then,
since (8) is certainly true for n = 3, it is always true.

Therefore F™(0) = <h —+k )f,

where the subscript indicates that the valuest =0, orz =a, y =0,
are to be substituted after differentiating.
Substituting in (2), we may write

F(¢)~F(0)+t(h—a—+k;—>f+ +_.tn<h!?_+k >f+R

Y/
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This is true for all values of t. Place ¢t = 1. Then, from (1) and
the last result, we have

e v) =fla+h b+ B =0, B+ (b ~a—+k5%>f

0
+or(hth >f+ Aa(h b iR @

This result may be written in another form by placing s =z — a,

k=y—b.
It is easy to show from § 7 that
1 / a a >n+1 )
k= (n+1}!<h E)x+k oy (g,mf’ ®)

where the subscripts indicate that we are to substitutex = £,y =9
wherea < £ <a4h b<n<btk
In a similar manner we may show that

f(x, 4, 2) =fla+h, b4k, c+l)
2

=S b 9+ (bt gt i)t ©
We have seen that a given function f(x, ¥) may be expanded
into a Taylor’s series with remainder R. If all the deriva-
tives of f(x, y) exist for a given point (z, y) and if R—0Q as
n increases without limit, the series becomes an infinite series
representing f(x, ¥). :
Conversely, a series

ao + mx + azy + asx® 4- axy + ozt - - (7

defines a function f(z, ¥) for all values of x and y for which it
converges. The definitions of convergence and absolute con-
vergence as given in § 20 stand. It is not difficult to show by
methods analogous to those in § 20 that if (1) converges for
T =21, Y = 91, it converges abszolutely for any value of &, y such
that — R <2 < R, -8 <y < 8. The region of convergence is
then a rectangle in the (z, ) plane such that for any point within
it —R <z <R, —8 <y <8. Itis also possible to show that
the series converges uniformly inside any rectangle which lies in
the region of convergence and hence defines a continuous fune-
tion of x and y. Also, the partial derivatives of f(x, y) may be
obtained by differentiating the series term by term.
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Hence ao=f(0,0), a =:‘<-g—£>, az = (%)o’

0

a _.1.(2_2!.> a -1(._92_) J.(Qﬁ)
8=2\oy T 2\az oy YT 2\0y%)

The idea of a dominant function (§ 28) may also be applied to
a function of two or more variables. Thus the function

b@, ¥) = Aw + A% + Aoy + - - - + Apryt 4+ - - ®)
dominates the function ' /
f@, ¥) = aoo + 010T + @1y + - - - + @Y+ - - - 9)
if (8) is a convergent series in which A; is positive and
A > aixl-

If (9) is known to converge for z = r, y = p, where r and p are
positive, a dominant function is easily found. There is then a

number M so that @[ ripk < M. 10)
_ M L 2\ v k
We place ¢(z, y) = ( x) < y) =M <;> (p) . (11)
1—-){1--=
r P
‘ M
By (10), lain] < o

so-that (11) domiunates (9).
Another dominant function may be found by placing

(&, ) = —
Ty
Y

x x "
=M+ M(—ﬂ>+---+M<,—+—> +een (12)
\T P rop
The term containing x*y* in (12) will be found in the expansion

of M<§+g> , wheren =17+ k. Itis

P n(n—l)---(n—k+1)<x>""k<y>k
M - =,
k! T P

and therefore, in the notation of (8),

n(n—l)o--(n—k+1).
klripk

(18)

Agp=M
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Now the binomial coefficient which occurs in (13) is always
greater than unity, so that

Ag > rpy S
whence, by (10), A > o]
and (13) dominates (9).

EXERCISES

Find the first and second partial derivatives of these functions:

2 2 ¥ ey Y
1. log (x* + y%). 2.tan"'=- 3 ;0 4. evsin~i(z—y).
z z2—y
2 2
Verify _B_L_ = __3___{_ for the following functions:
dx oy Oy ox
5.2 Y. 6. logVx2+y4y2. 1. sin“?—l- 8. ¢ sin y.
x4+ Yy x
9. If f= L > sin (z? + »?), prove that y a_ x ud_ =0.
x? 4+ y? ox oy
1
10. If f = y2 + 2 ye®, prove that x2 éj—. +v Zf 292
1.1 f= Va2 — 2 sin-' ¥ = prove that x g{-k Y= o =f.
— 2. .2 1 Y 32f
12. If f = log (x? + ¥?) + tan~! =, prove that 8——2 + = P = 0.
Yy
o’V 10V 1 90%V
— 0P —
18. If V = ¢*® cos (a log r), prove that e + -r-—a?+—3—2)—¢7—.0.
— o) _ 0%
14. If f=tan (y + ax) + (y — ax)’ prove that i = a? 5?
x
15. If z=f< ) prove that xiz-+ y—aiz._ 0.
ox oy
0z 0z
16. If z = j(zy), prove that r— — y == 0.
ox oy
0z x? 0z
17.lfz=92+2f( = +logy provethat—=2 —_—
oy y ox
} 2
18. If z=1zx <_£/_)+ (—)» rove that x? —— 0% 2 xy B% y? A X
¢( sbxp a2+ axa+2y =0
19. If z = ¢(z + 1y) + Y(x — ), Prove that + aa i 0.

20. If u = f(z, y) and y = F(x), ﬁnd —_—
dx’



EXERCISES 89

21. If 2 = f(z, y) and x = e*, y = ¢?, prove that
0% 0% oz 0z 0% 0%
2 9% 2 o hid
v 3x2+y 2y2+x8x+y6y 8u2+802
22. If 2=f(x, y) and x = e“ cos v, y = e" sin v, prove that
0% 022 0%z 0z oz
=y (—— — — y2 —_ —
e J<8y2 8x2>+( ’”a ikl
28. If x =e¢” secu, y = ¢’ tan u, and ¢ = ¢(x, ¥), prove that

cos u < 26 _ QQ) (32¢ )
oudv ou

029
i — 2 2
3 2+a )+( +y)axay
24.If V is a function of z and y, and r+y=2¢ecos P, x—y
=2 ie’ sin ¢ (i=V=-1 ), prove that
0*’v 0%V o'V
L 4 RY s
FrE + og? i ox oy
2y
" in terms of the deriva-

5
25. Given x = ¢* cos v, ¥ = €* sin v, find ¢
tives of V with respect to x and y.

26. Given x = ¢“ cos v, ¥y = ¢* sin v, prove thai

v o'V, [o? v
v, :eJu(Eﬂ_!‘/Jra v>_

ox?  oy? s
2 2 2
27. Given z = u+v,u—L»provethat(1 _3_%_3 = q? 8V.
a ox oy? ou ov

28. Given z = r cosh 8, y = r sinh 8, prove that
o'V 9*v _ oV 1 9%V 10V
92t ut ort r: o8 r or
29. If x =f(u, v) and ¥ = ¢(u, v) are two functions which satisfy the
equations af a¢, of ¢
ou or o ou
and V is any function of x and y, prove that

*V PV _[(0*V 'V Bf)]
3u2+ an® ((‘J~+ >R(‘u)+<av

1 . . . .
30. Ifu = o find the contour lines and the direction and magni-
22+ g

tude of the gradient.

31. If an electric potential V is given by V = log Vz? + 2 find the
direction and magnitude of the maximum rate of change of V.

32. Find the direction and magnitude of the gradient of a potential
e
N(r —
V = log —Jf———.@——j——?—/— at the point (0, a). ,
Viz+a)®+y° :

[}




90 PARTIAL DIFFERENTIATION

88. Find the direction and magnitude of the gradient of

N

u=e Vsinz + % e~3¥ gin 3 z at the point (g: O)-

84. Show that in polar cosrdinates the rate of change of a function f
along a radius vector is 5(;-]; and normal to a vector it is l —af—
r T

00
35. Show that in polar coordinates the directional derivative is

cos Y + - % sin ¢, where ' is the angle made by the direction con-

sxdered with the radius from the origin.
86. Show that in polar coérdinates the gradient is

(af\ 3

87. Show that the sum of the squares of the directional derivative in
any two mutually perpendicular directions is constant and equal to the
square of the gradient.

88. If y = ¢p(x) is any curve, show that the directional derivative along
this curve is of

_+Z;/¢()

o

Vi ¢'*x)
Show that the following differentials are exact, and find a function
of which each is the differential :
39. (2x—y-+—1)d:c—l— (‘ y — x — 1jdy.
1 +)y: do— 14+«

8f

e rmr——

40. 5 ~Jdu
L dx Y
41. +<- ‘__._.,._>dy.
\/.—Z‘Ly '\/x2+y2
2x— 2y+x
a2. X" Y qr 4 —d
Py Py

43. (%% — 2¥xdr + (% + Dy dy + @2 - 2>+ y* — Dz da.

4. W+z—b—c)dz + z+z—c—a)dy+ (x+y —a— b)dz.

4. W+ 2)Qx+y+2der+ @+ x2)2y+ 2+ x)dy
+(x+y)(2z+z+ yde.

o\
.(1 —————>d + (1— 2y + (5 - %)dz.
Yy x 4 I/ X 2

47. Show that a force directed toward the origin and inversely pro-
portional to the square of the distance from the origin is conservative.

48. Show that a force directed toward a center and equal to any func-
tion of the distance from the center is conservative.

4

>



CHAPTER 1V

IMPLICIT FUNCTIONS

39. One equation, two variables. We are accustomed to say,
somewhat roughly, that an equation

S, 9) =0 @M
defines y as an implicit function of z and is equivalent to the
equation v = f(x).

We shall proceed to inquire just what this means, to examine
the hypothesis underlying the statement, and to put the state-
ment in a more scientific form. ‘

In the most elementary cases equation (1) can be solved to
obtain y. For example, Py —a’=0
gives y=Va?— z2; _
but a little reflection shows that as soon as equation (1) becomes
complicated such an elementary solution is impossible. We need
to show, then, that y in (1) satisfies the definition of a funection in
the sense that a value of xr assumed in (1) determines a value of ».
This statement, however, is by no means self-evident. We shall
proceed to prove it in the case in which the solution may be
expressed as a power series. We shall assume that equation (1)
may be satisfied by x = xo, ¥ = %o, and that

(%} #0,

Ja = ry
Y=Y

Without loss of generality we may take 2o =0, yo =0, as this
amounts merely to a change of codrdinates. We also assume
that f(z, y) may be expanded into a series, so that we may put

Fz, y) = biox + bosy + baox® + by + bozy® + - - -, @)
where the term bgo is omitted since, by hypothesis, f(0, 0) = 0.
Equation (1) becemes

biot + by -+ baox? + buzy + boay® + + - = 0. (8)
91
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A\

Now bg; = <—g;f;) ; and since, by hypothesis, this is not zero, we
/0

may divide through bfy it and, after transposition, have, from (3),
Y = 102 + a20%% + a11xy + ao2y® + - - -. 4)
This means: that we have transformed equation (1) into the form
y=F(, ),
where F(z, y) is defined by the series in (4).
In (4) let us substitute the series with undetermined coefficients
Y =c1x + cox® + czx3 + - - -. 5)
By equating coefficients of like powers of x in the result the
coefficients ¢; are easily determined. For the first three we have
C1 = a0,
2 = @20 + G161 + Qo261
€3 = @30 + @2101 + 126:° + @o3c1® + 1162 + 2 ao2c1C2.
The series (5) then formally satisfies the equation. It remains
to prove that (5) converges for sufficiently small values of z.
The series (4) is, by hypothesis, convergent. Then, with the

notation of § 88, the function
M-

U

dominates F(xz, y). That is, ¢(z, ¥) may be expanded into a series
with positive coefficients

(x, y) = A + A2ox® + Anzy + Aoy’ + - - -, (6)
where Ak > | ). )
If we solve the equation y = ¢(z, @) €))
by a series expansion y=Cx+ Cox®+ - - - )]

in the same manner in which we have solved (1), the coefficients
C; are obtained from (6) by the same formulas by which the coeffi-
cients of ¢; in (5) are obtained from (4), and it is evident, therefore,

that C; > |ci|-

Hence the series (5) converges if (9) does. But the series (9)
may be obtained by solving (8) as a quadratic equation in y and
expanding the result by the binomial theorem. The resulting
series is known to converge for sufficiently small values of 2 and
can be no other than (9). Hence the series (5) converges.
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The existence of the function ¥ of z having thus been proved,
its derivatives may be found by use of the theorems of §86. For
we have by that section o

l'
df~—_d +3 dy=0; (10)

whence — = — — (11

Highier derivatives may be found by differentiating (11), or if

we divide (10) by dx and denote %Q= y’, we have

?_j_' (N .(i "=
ox ¥ T
Then differentiating successively with respect to z and placing
oY ., _ Y ,
¥ == ey Y=g etc., we have the equations
82f ?)2f y ﬁzf o .,
2% 8 3f o“ 0%f o%f
. 3_~____ i 12 13 1
3 22 5y +3dxdy2y +ay3y +352yy
0%f af
s Pt . 17 2Lt — .
+ Pz oy v+ 2 Y 0

In this way we may find the derivatives ', "', ¥'’/, ete., pro-
vided the partial derivatives of f(z, y) exist, since in all cases the
coefficient of each of the derivatives ¥/, ¥’/, ¥’’’ in the equation in

Lo . 0 .
which it first appears is -()i’ which has been assumed not to van-

ish. In,this way we may write down series (5) without following
the method of the text.
40. One equation, more than two variables. The equation

fz, 9,2)=0 1))
defines any one of the variables, szy 2, as a function of the other
two, x and y; namely, 2= ¢(z, y) @)
provided 9 #* 0.

gz
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Proof of this statement and its exact formulation are similar to
those of § 39 and will not be repeated.

If we apply theorems 1 and 1I, § 36, we have
o Lo . o

df=5;dl‘+5y-dy+8z

If in (3) we place y = constant, then dy = 0, and we have

dz = 0. 3)

o
/dz ox ’
(;1'52“—: - z’ “)
0z

. o . o0z
where the symbol on the left is used as less ambiguous than P

since the variable which is held censtant in the differentiation is
explicitly given as a subsecript.
Similarly, by placing « = constant, die = 0, we have

(_(.l_gi) = — .'?_;i (5)

We may also in (3) place z = constant, dz = 0, and have
of
de\ oy
(dy)f of ©
or

From (4), (5), and (6) we get the interesting relation

’z

‘which is sometimes written

— Y 1, ®

Equation (8) is an example of the fact that the stadent should
not use 0z, oz, etc. as symbols for differentials which may be
canceled. To do this in (8) leads to an absurd result. The less
ambiguous equation (7) would hardly lend itself to this false
cancellation.
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The equation fe, v, 2,u,v,--)=0 {9

defines any one of the variables as a function of the others, pro-
vided the derivative of f with respect to the variable chosen
does not vanish. The usual hypothesis as to continuity must be
made, and the proof of the theorem is analogous to that given
in § 39.
From (9) we have
fede+fydy+fidze+fudu+fodv+---=0. (10)

In (10) we may place all differentials except any two equal to
zero. For example, let dy # 0 and du 5 0, but all others bhe equal
to zero.

Then fudy+fudu=0;
oy fu
whence Faha f,,’

. . ¢
where all variables except the two occurring in the symbol 8_y are
held constant. w

41. Two equations, four variables. Two equations

F(x, y, u, v) =0, )

G(x, 9, u, v) =0, 2)
define u and v as functions of x and y, provided

FouGrn — FoGy % O. (3)

This statement assumes that there is a set of values (xv, %o. %o, ¥o)
which satisfy equations (1) and (2) in the neighborhood of which
F and G are continuous with continuous first derivatives and for
which the condition (3) is satisfied. Then « and v are defined as
functions of z and ¥ in the neighborhood of (o, %o, uo, v0).

To prove this consider equation (1). By virtue of (3), F,
and F, cannot both be zero. Let us for definiteness assume that
F,+# 0. Then, by §39, (1) defines » as a function of (x, y, u);

namely, = (x, ¥y, u). (4)
From (1), F.dx 4 Fydy + F,du+ F,dv =0, (B)
dv F
whence ( El—i)m, =— "1;.: ;
, P 7.
that is, po= 0] (6)
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Substitute from (4) in (2). Then G becomes a function of z, y,
and u, so that

i

G, y, u,v) =H(z, y,u) =0, ("
which by § 39 defines u as a function of z and y if H, #+ 0. But

dH =dG =G, dr + G,dy + G, du + G, dv
=G.dz + G, dy + G, du + G,(¢, dx + ¢, dy + ¢, du)
.= (G: + Gyd)dx + (G, + Gvd)dy + (G, + Gydu)du ;

whence, by theorem III, § 36,

_m=m+mm=ﬂﬂ7ﬂ9, (8
the last reduction being made by (6). Hence the condition that
H, # 0 is the condition (3).

This condition being fulfilled, (7) defines u as a function of x
and y, and then (4) gives v as a function of x and y, and the
statement is proved.

The statement having been proved, the partial derivatives of
u and v are best found by using the principles of § 36, as follows:
From (1) and (2), by I, § 36,

F.de+ F,dy+ F,du+ F,dv =0, 9)
G.dx + G, dy + G, du + G, dv = 0. 10)

These equations may be solved for du and dv in terms of dz
and dy, thus:

— — F.G
du = — (Fva Fsz)dx + (Fva F, y)dy’ (11)
F.G,— F.,G,
do = — (F.G; — F.G,)dx + (F.G, — F,,Gu)dy‘ (12)
F.G,— F,G,

It is to be noticed that the denominator in (11) and (12) is
just the expression which by hypothesis does not vanish. Should
it vanish, equations (9) and (10) cannot be solved for du and dv.

The partial derivatives @___ <du> ou 0v Ov

o i) can then be

v 3@/’ or oy
read off as the coefficients of dxr and dy in (11) and (12) by use
of III, § 36. )
A special case of importance occurs when equations (1) and (2)
take the form
r = ¢(u, v), (13)

y=vyu,0), (14)
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where the connection with (1) and (2) is shown by placing
F=2x— ¢(u, v), G=y —yY(u, v). Then the condition that (1)
and (2) may be solved for w and v is

‘#u‘pv - d’w\l/u # 0. (15)
From (13) and (14) we form
dr = ¢, du + ¢, dy,

dy =y, du+y,dv;
whence du = M,
DNy — P (16)
dv=—¢/“dx+ ¢udy;
¢u¢v - d’v‘l’u
du 7/
whence we find <—) =, 17
dx v ¢u‘l’v - ¢v\bu ( )
du dv dv
and similar expressions for< ) (—>’ (——)
dy/= \dx/v \dy/= u
Now <—-—> may be written, when no ambiguity is caused, as —
dx v dx
_om B oy oy
and ¢, = ou’ o = o Yu= ou’ Vo= v

The relation (17) shows emphatically that %’:—: is not the

. ox
reciprocal of —-

ou
42. Three equations, six variables. Consider the equations
Fx, y,2,u,v,w)=0,
G(x, ¥, 2, u, v, w) =0,
H(z, y, 2, u, v, w) =

By § 40, equation (1) defines w as a function of z, y, 2, u, v, pro
vided F, # 0, and we have

F,dx+ F,dy+ F,dz+ F,du+ F,dv+ F, dw = 0. (4)

If the value of w is substituted in (2) and (8), we have two equa-
tions which may be treated as in § 41 and solved for » and » in
terms of z, y, and z, provided the condition of §41 is satisfied.
This eondition is

ow ow ow
(Gu + Gw au><Hv+Hw "a'") e (Gv + Gw a )(Hu+ Hw a )#: 0
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where —g—g and ow are to be obtained from (4). This gives
v
G,H, —~ G, H, Gy,H, — G,H,
F, vy p Twttw Tuwu
u . + e
G,H,— G,H
+ o= £ 0, 5) -

or, in determinant form,
1 | FPu Fo Fy
716 Go Gu |#0. (6)
“|H, H, H,| :

We have obtained this result on the hypothesis that 7, s 0.
The same result is obtained, as the student may verify, if we
assume either that F,+ 0 or that F,# 0. If all three of the
derivatives F,, F,, F, are zero, condition (5) is certainly not
satisfied. Heance we have the result that the original equations
determine u, », and w as functions of x, ¥, and 2, provided (5)
is satisfied.

The partial derivatives of u, », and w with respect to z, %, and z
are most readily found by considering, together with (4), the
equations

G.dr+G,dy + G, dz+ G, du + G, dv + G, dw = 0, )

H,de+ H,dy + H.dz+ H,du+ H,dv+ H,dw =0, (8)
solving (4), (7), and (8) for du, dv, dw, and applying III, § 36.

A special case of importance occurs when the original equations

1 +
are in the form T = ¢(u, v, w),

¥y =y, v, w), 9

2= x(u, v, w),

and our work shows that these may be solved for u, v, w if

|0 Do Du
Yu Yo Yo |#0.
Xu X@ Xw:

43. The general case. If we have n variables connected by p
equations (n = p), there are in general n — p independent vari-
ables which may be taken at pleasure. The remaining p variables
are functions of the others. The derivatives may be found by
1pplying to each equation theorems I and II of § 36, solving for
the differentials of the functions, and applying theorem III of § 36.
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As noted in the words “'in general” there may be exceptions to the
existence of the functions. These exceptions will be characterized
by the vanishing of certain combinations of derivatives, while at
the same time the solution for the differentials becomes impossible.
If u < p the equations will be in general contradictory.

We shall not take the space to prove these statements. The
. general method of proof is sufficiently evident from the simpler
cases already handled.

44. Jacobians. Return to the equations

z = ¢(u, v), (1
y =y (u,v), @)

of §41.
The expression Oy — P, 3)

which figures there, is called the Jacobian, or funciional deter-
manant, of 2 and y with respect to w and », and is variouslv
expressed by the symbols

lox o=z
(@9 _ 8@y _ }a av!__afg__gg@_ "
(w, v)  o(u, ) | 2y dy Oy oudv 0vou !
 ou 8v|

We have proved in § 41 the theorem

I. The necessary und sufficient conditron that equations (1) and {(2)
should be solvable for w and v is that the Jacobian (4) should not vancss.

We shall now show that if the Jacobian vanishes, there is a fune-
tional relation between x and y If all the derivatives ¢, ¢, Yu, ¥,
are zero, equations (1) and (2} reduce to the trivial case z = eon-
stant, 4 = constant. We may therefore assume that at least one
of them (for definiteness say ¢,) does not vanish.

Then (1) defines » as a function of x and u, and

de = ¢, du + ¢y dv;

whence dv = 1 dx — Pu
@y v

Then from (2), with » expressed as a function of x and u,

(Zy 1;/1& du +" %( :l, - '(g_ du)

_ b= by Yy :
T wtg®

du. (5)

/



100 ‘ IMPLICIT FUNCTIONS

By hypothesis the coeflicient of du in (6) vanishes. Hence if y

is expressed as a function of u and z, _S?_/ =0, and y is independent
of 4 and a funection of z only. u

Conversely, let us assume that in (1) there is a functional
s.-relation between x and ¥; namely,

Fz, y) =0. )

Then F,dex+ F,dy=0; (8)

whence  (Fu¢u + Flu)du + (Fagy + Fyby)dv = 0. )

The last equation is true for all values of the independent vari-
ables « and v. Hence R

Fx¢u+Fy¢u=O, Fx¢n+Fy\[/v=O; (10)

whence du¥y — P, = 0. (11)

Therefore we have proved the following theorem :

II. The necessary and sufficient condition that a funciional rela-
tion should exist beiween x and y in (1) 7s that the Jacobian ng,_y_)
. o(u, v)
should vanish.

As a simple illustration of these theorems eonsider the equations
r=au-+by+4ec,
y=fu-+gv-+h.
The functional determinant then becomes ag — bf. Now if
- ag - bf # 07 the equations can be solved for » and ». But if
ag — bf = 0, the equations cannot he solved. In fact, in this case
ge -— by = ¢g — bh,

a functional relation between x and y.
As a second example, consider

r=u-+v+1,
y=u2+4+2un+ o*+ 2.
&y, |1 1 _
Here J<u,v)_‘!2u+2i’ 2u+2v,_0'

and the equations cannot be solved for « and v. Obviously
y=(x—-1)%+2
so that there is a functional relation between z and y.
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The following property of the Jacobian is important ; namely,
J(-"’—”) : J(’ﬂ>= 1. 12
U, v z,y .

Writihg the left-hand member in determinant form and com-
bining by the law of multiplication of determinants,* we have

ou ou
i ¢u 47,, f E 51; ¢u + ¢v o ¢u + ¢v
Yu Vol |00 o0
ool Wt bt
N
| oz oy I 1 0 l 1
2R 2NN LA
ox ay
In a similar manner it may be proved that
EENNE)
x, E» n/ E’ n
Again, if we have, as in (9), § 42,
z = ¢(u, v, w), (14)
Y= ‘//(u» v, ’UJ), (153
z= x(u, v, w), (16)
b Dy Py
the determinant Wu ¥ Yo a7
) | Xu Xo Xw

is called the Jacobian of r, y, and 2z with respect to u, v, and w
and is expressed by the symhol

J<x, Y, 2> 0, ¥, 2)

u, v, w/ 0w, v, w)

(18)

The results of § 42 may then be expressed by the theorem

LI The necessary and suffictent condition that (14), (15), (16)
may be solved for u, v, w is that the Jacobian of z, y, and z with
respeet to u, v, and w shall not vanish.

» Students to whom determinants are unfamiliar may verify this by actual multiplica-
tion, using tmply the definition ﬂut,:: :‘ l is a symbol for the expression a,b, — asb,.
2
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Suppose now the Jacobian does vanish. If all the derivatives
®u, Pu ¢» vanish, equation (14) reduces to the trivial case
z = constant. We shall therefore assume that at least one of
these derivatives does not vanish and shall take ¢, # 0 for defi-
niteness. Then (14) may be solved for w, and the result be substi-
tuted in (15) and (16). By the same process which obtained (5),
§ 42, we see that the Jacobian of y and z with respect to w and v

from these equations is
1 <x, Y ? >
u) l’: w/

b
which vanishes by hypothesis. Hence, by the earlier part of this
section, there is a functional relation between y and z. This
relation obviously may, and usually does, contain z, which in
this work has been considered merely as a parameter.

Conversely, let a functional relation
F(z,y,2)=0 (19)
exist between z, ¥, and z of (14), (15), (16). This relation exists
for all values of the independent variables u, », w, and therefore
the partial derivatives of F with respect to u, », and w vanish.

Hence
an"’+ 2 + P % _y,
F:a—x-+ y@-+F = =0,
F, 0z
Fs 8 +F 3 + * ow =0.

By a well-known theorem of algebra this equation can exist
when and only when the determirant of the coefficients of F,, F,,
and F, vanishes. But this determinant is the Jacobian. Hence

1V. The mecessary and suflicient condition that a funciional rela-
tion should exist between x, y, and z 1s thai the Jacobiar of z, Y, and z
with respect to u, v, and w should vanish.
EXERCISES
Find and from each of the following equations:
:1"
1.2 + gt =ab, 4. log (z* + ") — tan™! gz‘).

2. 2"+ y" =a" 5. cos (& + y) + cos (x — ¥ = 1.
G Fev=e TV 6. &tV = 4%,
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7. If f(z, y) =0, prdve that
32f (3}') 9 % of of ?i(g)’
d2y 222 \ oy 0x 0y 0% 3y oy® \ox

G

Find -aaﬁ from each of the following equations:
x

8. =+5+—==1 10 22 + g + 22 —ud = 0.
a 4

1 ¥

9. x+y+z=kryz. 11 sin™' = + log (&2 +y? +2%) = 0.

12. If f(z, y, 2, u) = 0, prove that
ou 9x Oy 0z _

ox 0y 0z ou

where each partial derivative is found on the hypothesis that all vari-
ables except the two involved are constant.
18. If f(x, vy, 2, u) =0, prove that

ou o2

cx ou
where each partial derivative is found as in Ex. 12.
14. If f(z, v, 2z, u) = 0, prove that
or ay oz
8y 0z 0x

where each partial derivative is found on the hypothesis that all vari-
ables except the two involved are constant.

15. Given that an equation f(v, p, t) = 0 connects the volume, pres-
1/dv\ . . .
sure, and temperature of a gas, that a, = _<E1tj> is the coefficient of
. dp\ . v P
expansion, and that E; = — v<—&§) is the modulus of elasticity, prove
t

that o, E, is equal to the rate of increase of pressure with respect to
the temperature if the volume is constant.

16. Given z = r cosh 8, y = r sinh 0, prove that
(7),= (&),
dr dx

dy\ _ ar
(E;) 8 - (dv>z
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17. Given u = log \/x’ + y2%, v = tan™’ v, prove that
x

(8) (&) + (&) ()~

18. If u = ¢(x, y), v = Y(x, y), prove that

(22, ()

19. If u = ¢(z, ), v = ¥(x, y), prove that

(&), (@) (@), (@)=

20. If f(u, v) =0, u = lx + my + nz, v = 2 + y? + 22, prove that

\

0z oz _
(ly—mx)+(ny—mz)éz-l-(lz——m:)—a—;—o.

2
21 If f(u,v) =0, u = %, v= z;’ prove that

0z 0z
2x —+2y—=2z.
¥ ox 2y oy z
22. If f(x? — %2, y? — 2%) = 0, prove that
oz 0z
Y2 — + 2 — = xY.
vz ox oy
28. If f (5: 5) = 0, prove that

o oy

24. Givenu® +v* + 2 -3y =0,u?+v* + 92+ 22=0, ﬁnd(ZD
v

25. Givenx—-y+u—v=a,x’—y2+u2—02=b,ﬁnd<l_i_).
Y

28. Show that F(z, y, z) =0, G(z, y, 2) = 0 define x and y as functions
of 2z, and prove that

dz:dy:ds = F,G, — FG,: F.G, — F.G, : F.G, — F,G,.

27. If x=¢(u, v), y=v¥(u, v), 2= X(u, v), show that in general
z=f(x, y) and prove that

(@)= () 6
dx U, v U, 0
28. Given z=r cosh 6, ¥y = r sinh §, find (§f> <3/> in terms of r,

oaf o
or 26
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29. Given z = f <x )nshow thatxa—+y 0z =0.
ox oy
2 2 A a
ao.Ifz=f(’° +y ):showthat:vg-+y-—z—= .
y ox oy d
: — 2 2 2 2 __ 32 d azxy
31.Givenzx+y+u+v=a, 2+ y* +u>+0>="0% fin (du)
v

du
82. Given 2 + y?* + u? — 2 =0, zy + ur =0, ﬁnd(dx>
v

dz
83. Given f(x +y — 2z, 22 — y2 + 2%) =0, find (d:v)
’y
34. Given u = ¢i1(x, ¥, 2), v = ¢2(x, ¥, 2), w = ¢3(%, ¥, 2), and assum-

ing J( );ﬁ 0, show that J<u, v, w)
vz (@g) _ \x, 9,2/
de /v J(L“.’)
Y, 2
85. If Z=oax + y¢(a) + F(a), 0 = 2 + y¢'(a) + F’(a), prove that
g (2%,
ox? oy? o0z 0y
no matter what the functions ¢(«) and F(«a) are.
2 —
36. If z-@ ¢(a)] r+a-—y G ), prove that _d_z_&,_ 2, no

@ ) 0z Oy

matter what the function ¢(«) is.

87. Given z = x + y¢(2) and u = ¢(2) and taking z, ¥ as the inde-
pendent variables, show that

ou 8u u_ 0 9 Eu] o™u -1 [ R ]
=@ 5 o [[¢< 2)] i W_ (¢(2)]
38. Show that a necessary condition for a maximum or a minimum

of

value of f(x, ¥), where x and y are independent variables, is that P = 0,
x

gf 0. Generalize for any number of variabies.
Y
89. Show that the values of x, ¥ which give f(x, ¥) 2 maximum cor a
minimum value, if such exists when x, y are connected by the relation
¢{x, y) =0, may befound by considering the function f(z, ¥) + A (%, ¥)
asin Ex. 38 and determining A so as to satisfy the condition ¢(x, y) = 0.

40. Show that the maximum and minimum values of u = % + 92,
where uz® + 2 hxy - by? = 1, are

—@+b+Vie—b>+44

2(ab — h%)




CHAPTER V

APPLICATIONS TO GEOMETRY

45. Element of arc. From a fixed origin O three axes 0X, 0Y, 0Z
are drawn mutually at right angles determining three mutually
‘perpendicular planes. The codrdinates (z, ¥, z) of a point P are
the three perpendicular distances from these planes to P, a
distance being positive if measured in
the direction of the corresponding axis

z

and negative if measured in the oppo- Q
site direction. ds~dz
From P (Fig. 81) let lines of infini- P o

tesimal lengths dzx, dy, dz be drawn
paraliel to the axes, thus determining

a point @ with codrdinates o x
(x + dz, y + dy, z + dz).
Let ds be the length of the infini- 4 Fic. 31
tesimal line PQ. Then we have
ds? = dx? + dy? + d2?, @

as is readily seen. This defines the element of arc.
The direction of PQ is determined by the angles it makes with
dx, dy, dz respectively. Let these angles be «, B, ¥ respectively.

It is apparent from the figure that R
x dy dz
== e =7 =2 (2
cos a = 75 cos 3 > COS Y l (2) 9

These are the direction cosines of PQ. From
(2) and (1) it follows that
cos? o + cos? B + cos? y = 1. (3)
It is obvious that a direction is completely s

fixed by the ratios dx : dy : dz.
Let two directions PQ and PR (Fig.32) be determined by

dx :dy :dz and 0x : 8y : 6z respectively, and let 8 be the angle
between them. Then
cos 0=

FiG. 32

dods  dydy  dzde @
ds 6s ' ds ds dsds
106
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This follows from the formula of trigonometry,
RQ*=PQ°+ PR’ —2PQ- PR cos 0,
where
PR’ =ds’ =da® + dy® + dz?, PR’ =852 = oa% + 5y® + 522,
RQ” = (dz — 6x)® + (dy — 8y)* + (dz — 62)%.

From (4) it follows that the necessary and sufficient condition
that two directions dx :dy:dz and 6x: 8y : 6z should be orthogo-

nal is . dwdr+dydy+dedsz=0. (5)
Let. the point P so vary as to describe a curve defined by the
equations ;= £, y=fl), 2=, 6)

where i is an independent variable and the functions are con-

tinuous and differentiable. Let P(x, y, 2) (Fig. 33) be a point

corresponding to a certain value of ¢, and 7

Q the point obtained by giving to ¢ an

increment At = dt. The coordinates of @

are then (x + Az, y + Ay, z + Az). -
Draw the chord PQ. The direction of

this chord is determined by the ratios

Az : Ay : Az. Let At — 0; then the

ratios Ax:Ay: Az approach the limiting p

ratios dz:dy:dz. The straight line PT '

with this direction is the tangent to the v

curve at P by definition, since it is the Fic. 33

limit line approached by a secant through

. two points on the curve as the two points approach coincidence.
The point (x + dx, y + dy, z + dz) is then a point on the tan-

gent line; but, except for infinitesimals of higher order than

dzx, dy, and dz, its coordinates agree with those of Q. The expres- °

sion (1) then rigorously defines the length of an infinitesimal

tangent. However, the length of the curve is to be taken as

s= ‘f\/&x? + dy2 + dz2. )

This agrees with the definition of the length of a curve as the
Jimit of the sum of the lengths of chords, since Vda? 4 dy? + dz*
differs from VAz2 + Ay? + Az2, the length of a chord, by infini-
tesimals of higher order, and therefore, by § 13, the integral (7)
is the length of the enrve.
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We may therefore apply our formulas (1), (2), (3), (4) to curves
and, in .Fig. 81, regard PQ either as an infinitesimal arc or as a
tangent line or as a chord.

46. Straight line. Let the point P in Fig. 31, § 45, traverse a
straight line. It is evident that the angles «, 8, v are cunstant.
We have then as differential equations for a straight line

dx dy dz

ds ds v ds~ ' 0
where I, m, and n are three constants (the direction cosines of the
line) satisfying the condition

P4m?P+n2=1. ' 2)
In*egrating (1) we have, as equations of a straight line,
r=Ils+2, Yy=ms+y, z=mns+2. 3)

Here zo, %o, 20 are constants of integration and are obviously
the coérdinates of the point from which s is measured, which may
be any point of the line.

From (3) we obtain

T—% Y—Yo_2—2
I  m  n

4

as equations of a line not containing s, but where I, m, n are
bound by conditions (2). We may, however, replace I, m, n by
any three numbers A, B, C such that
lim:n=A:B:C. (6)
Then (4) becomes
T—T Y—Y _2—2
A~ B ~ C
and A, B, C are subject to no conditions.
Conversely, if (6) is given we may obtain l:m:n from (5).
Then, by (2),

) (6)

A B (&
= m= y M= - (D
\/AZ_*_BZ_I_C? '\/A2+B2+C2 "\/A2+B2+C2
From (6) and (5) also
dr.dy:dz=A:B:C=1l:m:n. (8)
That is, the direction of a straight line may be fixed by the ratios

of any three numbers A:B:C. The direction cosines of the line
are then found by (7).
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From (8) of this section and (5), § 45, it follows that the neces-
sary and sufficient condition that two lines with directions
A1 :B;:Ciand Az: Bz: C: should be perpendicular is

A1A2+ B1Bz + C1C2 = 0. (9)
47. Surfaces. Consider the equation
F(z, y, 2) =0. (1

By § 40 this defines one of the variables as a function of the other
two. The geometric locus of (1) is therefore a two-dimensional
extent which by definition is a surface, whether the equation is sat-
isfied by real or by imaginary values of the variables. For example,
the equation 224y 4224+ 1=0

is said to define a surface, though no point is real.
If one of the variables is absent from (1) so that, for example,

it becomes F(z, y) =0, (2)

it still defines a two-dimensional extent, since y is a function of
z, whereas z may vary at pleasure. In fact, if z is placed equal to
zero, (2) defines a curve in the XOY plane; but as 2z varies,
that curve is moved parallel to 0Z, and the complete locus of (2)
is a cylinder.

Finally, if only one of the variables is present in (1) so that,
for example, it becomes F(z) =0, 2)

it still defines a two-dimensional extent, since y and z may vary
at pleasure. In fact, (3) defines certain values of z, and the com-
plete locus of (3) consists of all those points for which z has one
or another of these values. Evidently these points lie on planes
parallel to ZOY.

Hence equation (1) always represents a surface. On the sur-
face (1) draw any curve with equations

r=fi(t), y=rfo2(t), z=fs(0). 4)
These values of z, y, z placed in (1) must reduce it to identity

in t. Hence dF = 0, and therefore

dt
oF oF oF ,
— = dr = 5
6xdx+8ydy+8zdz 0, )
where dx:dy:dz are subject only to the condition of being the
direction of some curve on the surface. Otherwise expressed,

dz : dy : dz is any direction on the surface.
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. . F
Consider any point P on the surface. At that point -Z—;, %g, and

?—E have definite values and may be used to fix the direction of a

z
line PN (Fig. 34). That is, we may construct &
. . F OF

from P directions dx : 6y : 0z = oF : —?—- : 8_1*‘
or oy 0z
Then, from (5), §45, the line PN is orthogo-
nal to all directions on the surface. This
line is called the normal to the surface, and
we repeat explicitly that the direction of the
. OF JF
normal to a surface s _8___@_ : QE Fig. 34
or dy 0z

48. Planes. It is obvious that the necessary and sufficient con--
dition that a surface should be a plane, or a set of parallel planes,
is that the normals at all points should be parallel. In that case
wehave o oF oF

— =N, —=A\ — = A
ox * oy B, 0z ¢ @)

where A, B, C are constants and A an unknown factor.
The simplest solution of (1) is

F=Ax + By + Cz.
To obtain the general solution we substitute
u = Axr+ By -+ Cz.

Then F(x,y,z) = F(l’, i, %;[1—’9:———&),

8F | OF 2 A\

whence — 4+ — - =AA RC(—— =1=0,

' ox 0z dx + . C/

oF OF ¢z B
_— 4t ’,":\.B \\C ’”'_\L:G,
oy iy ot < c/

so that the surface satisfying /1) has the equation

F(u) =0,
which solves into one or more equations u = constant or
Axr+By+Cz+D=0. @

This is a surface whose normals are parallel, and since it is in-
tersected in only one point Ly any straight line not lying entirely
on it, it is a plane.
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Conversely, if (2) is given with any value of the coefficients,
{1) follows. Hence

The necessary and sufficient condition that-a surface should be a
plane is that its equation should be of the form

“Ar + By + Cz+4+ D= 0.
Then A: B:C fix the direction of any normal to the plane.

If (21, 1, z1) are the coordinates of a point on a plane, they will

satisfy (2). Subtracting the resulting equation from (2), we have

A@—2)+Bly—uy) +Cez—2)=0 (3)

as the equation of a plane through a fixed point perpendicular o
a fixed direction or to a fixed straight line.

By (6), § 46, the equations of the normal to (2) through the

point {x:, ¥1, z1) are
x«xl_y~y1__z~z;q
A B C

Applying this to the surface (1), § 47, we define the tangent

plane to the surface at a point as the plane perpendicular to the
normal to the surface at the point. Tts equation is, therefore, by (3),

(4)

oF oF LOF
GEN (e oy (94 _ (s ) =0: (5
‘<3x>1\x @) +_<8y/\’1(y v + \82)1(2 0=0; ()
and the equations of the normal are

x*:Cl__y—?ll_Z-—-Zx (6‘)

) " () )
(390 1 \3?! i \O0%/:

-

F ’ oF
where (2—> ete. represent the value of — ete. when = =ua,
ox. 1 ox

Yy=1Yi, z=2.
. A plane is determined by three points not in the same straight
line. Let (1, #1, 21), (£2, ¥2, 22). and (x3, ¥3, 23) be three sucn

points.
Since the plane passes through (z3, 1, z1). its equation must be
of the form 4z — 2)) + By — ) + Cl~ 2) = 0. o

But the points (22, ¥z, 22) and (zs, %3, z3) must also lie on the
plane. Hence 4, B, C in (7) must satisfy the equations
A(fZ?z - xl) + B(yz - yl) + C(Z2 - Zx} = U, /8*3
A(xs - z1) + Byz — 1) + C(zs — z1) = . )



112 APPLICATIONS TO GEOMETRY

If the ratios A : B:C are found from (8) and substituted in (7),
the result is the equation of a plane through three points. In
determinant notation the result is

r—x Y—yr —2
To— 21 Ya—Y 2e—2|=0. )
T3— %1 Ys— Y 23— 721
49. Behavior of a surface near a point. If the equation (1) of § 47
contains z, it may be put in the form
z=f(x, y), 1)
and obviously any surface may be so expressed by proper choice
of the z-axis. For convenience we shall use the common notation
by which P 92 2, ‘e 022 B ?iz_ @
Toxoy oyt

The direction of the normal to (1) is, by §47, p:q:— 1. The

equation of the tangent plane at (a, b, ¢) is
z—c=plx—a)+qy—0>), (3)
and the equations of the normal line are '

QO

=, = -y T.—_r‘ y
P=5g ¢ oy ox?

r—a Yy—b z-—c¢
—3 — y 4
. p, T “4)
where in (3) and {4) p and ¢ are to be computed for the point
(a, b, ¢).
We expand the function f(x, %) in the neighborhood of z = a,
y = b by Taylor’s theorem and have, since ¢ = f(a, b),

z=c+ple—a)+qy—b) +30r—a)’
+2s(@—a)(y—b) +y— b’ + R. 5)

The right-hand member gives the disiance from the plane X0Y
to the surface; call it z,, On the cther hand, the value of z in
(3) gives the distance from XOY to the tangent plane; call it 3.
Then 2z — 2 is the distance between the surface and its tangent
plane, and

nn—an=3r@—a)*+2s@—n) @ —b +ty—b*+R. (6)

We shall study the sign of the expression (6); for if it is always
of the same sign, lhe surface is on the same side of the tangent
plane, and if its sign changes, the surface is sometimes on one
side of the plane and scmetimes on the other side.
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On the XOY plane draw a circle (Fig. 35) with M(a, b) as a
center. Take P any point inside the circle. Let p be the distance
MP and let 0 be the angle made by MP
with M X’ parallel to 0X. Then

x—a=pcosd,
¥ — b= psin 6.
In fact, (p, 8) are polar coordinates

with the origin M. Substituting in (6),
we have Fie. 35

3
22 — 21 =% p*[r cos?0 + 2 s cosf sinf + t sin? 6] + %— R, (7)
since R is cubic in z — a and y — b.

The coefficient of p? is zero when 6 satisfies the equation
rcos®d + 2 s cos 6 sin 6 + ¢ sin?0 = 0; (8)
—s VT )

t

Case 1. rt —s? > 0. The values of tan 6 in (9) are imaginary.
Therefore (8) has no real roots, and the coefficient of p? in (7)
has always the same sign; namely, the sign of r or of ¢ (r and ¢

have the same sign, since rt > s?). It follows that within the
circle we have drawn there is some finite quantity m such that

|7 cos?0 4 2 s sin 0 cos 0 + ¢ sin®0] > m.

that is, when tan 6 =

Within the same cirele, R’, in formula (7), must be finite {from
' the nature of the remainder R. Hence there is a number M such

that |R'|< M.
3m
If we now take p so that p < Vi we have
< 317 cos?6 + 2 s sin 6 cos 8 + t sin?8)|
o ;
7

that i P PP 2 . . 2
at is, ]R n6-<‘5|rcos 4 2ssin 6 cos 4+ tsin BI,

and therefore the sign of 2> — z; in (7) is the same as the sign of
its first term. Hence

If rt —s® > 0, the surface lies entirely on one side of ils tangent
plane and lies above it if v and t are positive and below it ¢f r and ¢
are negative.
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The word *“above” in the foregoing theorem means in the
positive direction of 0Z. _

Suppose, now, that the origin is transformed to the point
(a, b, ¢) and the tangent plane is taken at the plane X0Y. The
equation of the surface is then

Cz=3(x?+2szy +t?) + R,

where R involves terms of the third and higher degrees in z and y.
Suppose the surface is cut by a plane z = e. The section is the
curve re? + 2 sxy + ty? =2 €, (10)
neglecting the terms in R. Since rt — s? > 0, the curve (10) is an
ellipse. Hence

When 1t — s? > 0, the section made by a plane parallel to the
tangent plane 1s approximately an ellipse.

For this reason the point is called an
elliptic point (Fig. 36). The ellipse

re? 4282y +ty?> =1,

similar to (10), is called the indicairiz.
CaseE II. rt—s? < 0. The values of
0 in (9) are real. Call them a; and «s.
Then the coefficient of p? in (7) is
1 r(cos 6 — cot a; sin 6)(cos # — cot a sin 6). an
The real lines 6 = a; and § = a, (Fig. 37) divide the plane
into four portions within which the expression (11) is alternately

N

FiG. 36

plus and minus. ' ‘ v

Consider a point P with codrdinates ,__ .
(o, 61). Then, from (7), L P'l

3 P
m—n=3%0%4 +% R, (12) > o
where e
]

A =rcos’f;+ 2 scos 0 sin §; 4 ¢ sin6;. Fre. 37

As p — 0 the sign of the first term of (12) determines the sign of
the 2o — z;. But the sign of A depends upon the section of the
plane in which P lies. Hence

If rt — 8% < 0, the surface lies partly on ome side of the tangen:
plane and partly on the other side (Fig. 38).
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Let the origin be transformed to the point (a, b, ¢), and the
tangent plane be taken as the plane of XO0Y. Then the equation
of the surface is

z=31(x? 4 2 sxy + ty*) + R.

The section by z== e is approximately

re? 4 2 sey + ty? =2 €, FIc. 38
which is a hyperbola, since rt — s> < 0. Hence

If rt — s® < 0, the section made by a plane parallel to the tangent
plane s approximately a hyperbola.

The point is therefore a hyperbolic point. The curve

re? 4+ 2sxy +ty?=1
is the indiecatrix.

CAsE III. rt —s?= 0. The coefficient of p? in (7) is a perfect
square, and the roots of (8) are equal. Neither of the arguments
made in I and II is valid. The case is ambiguous, and the surface
may be either on one side of the tangent plane or on the other.
Examples wiil show this.

Take first z=z2

Here the origin is the point (a, b, ¢). The tangent plane is
z=0, and r=2, s=0, t=0. Since z is always positive, the
surface lies on one side of the tangent plane.

Take, secondly, z = x3.

Here r = s = (= 0. Since 2z is positive or negative according as
x is positive or negative, the surface lies on both sides of the tan-
gent plane.

Finally, consider 2z =2%-—3xy?+ 2y

If we follow the procedure used in Case II and place

x=pcos b,
y=psin @,
we have 2= p?(cos?0 — 3 p cos O sin? 0+ 2 p?sintf). (13)

For any given value of 8 the value of p may be taken so small
that the magnitude of the first term exceeds numerically the value
of the second term. In fact, we have only to take

) 1 _ 1} cosb

2 < 2 sin?é.

cos
3sin26
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" Consequently for any value of 6 the value of z in (13) is posi-
tive for sufficiently small values of p. This may easily be mistaken
for a proof that the surface is always above the xy-plane in the
neighborhood of the origin. That this is not so may be seen
by writing the equation of the surface v
in the form ]

2= (x—2¢y)(x— 9%
and drawing the curves (Fig. 39) 0 I —X

+ | +

2 __ 2 —
f2y =0 and zxz—y*=0. + |+

Then it is easily seen that for points Fia. 39
in the regions marked + in the figure
z is positive and for points marked — in the figure z is negative.
On the other hand, any straight line through O crosses a 4+ region
before reaching the origin.

If 1t — 8% = 0, the section of the surface made by a plane parallel
to the tangent plane consists approximately of two parallel lines.

These being a special case of a parabola, the point is called a
parabolic point.

50. Maxima and minima. The function f(x, ) has a maximum
value for x =a, y = b if

for all values of k and k sufficiently small. Similarly, f(x, ) has a
minimum value for x =a, y = b if

flo+h, b+k)> f(a, b) @)

for all values of » and k sufficiently small. If we represent the
function graphically by the surface

2= f(z, ¥), 3)

we may at once apply the results of the previous section. In the
first place it is evident that if z has a maximum or a minimum

value ¢ when x = a, y = b, the tangent plane of the surface must
be parallel to the XOY plane. Hence it is necessary that
oz 0z
—=0, —=0. 4
ox oy @)

Further, it appears that if the point (a, b, ¢) is an elliptic point,
2 has a maximum or a minimum value according as the surface is
below or above its tangent plane; if (e, b, ¢) is a hyperbolic point,



MAXIMA AND MINIMA 117

2z has neither a maximum nor a minimum value. If (a, b, ¢) is a
parabolic point, the question is doubtful. We may aecordingly
make the following statement :

In order that f(x, y) should have a maximum or @ minimum value
for x = a, y = b, 1t is necessary that for these values

of of
or 0, oy 0.
. .. O 0% 0% \? .
I [ R A )
f, in addition, prclewe ( P E)y) > 0, f(x, y) has a maximum
62 a2 2
value when —’2 and Q_f_; < 0 and o minvmum value when ?——f
22 or oy ox?
and a—y—z' > 0.
o*f o*f

0%f \? . .
prclw i (5;—0—?;> < 0, then f(x, y) has certainly mneither a
maximum nor a MmInTmum.

2 2 ~2 2 .
o1y (——0 / > = 0, the matler is doubtful.

ox® 517 T\ oz oy
Suppose, now, that we have a function of any number of
variables @z ).

The geometric interpretation is now inconvenient even with
the assumption of a space of four or more dimensions. Moreover,
the necessary and sufficient conditions for a maximum or a
minimum value are complicated. It is easy, however, to give
necessary conditions. For if f(x, ¥, 2z, - --) is to be a maximum
no matter how z, ¥, 2, - - - vary, it must be a maximum when
one alone of these quantities varies. But the necessary condition
that a function of a single variable should have a maximum or
a minimum value is that its derivative should be zero. This
is a well-known theorem of the elementary caleulus and has
been essentially proved in this text in § 5. Hence the neces-
sary conditions that f(x, ¥, 2, - - -) should have a maximum or a
minimum value are

Yo Yooy Y_y... ®)
ox oy .

In applied problems it is usually sufficient to solve equations (5)
and then determine from the nature of the problem whether the
sclution gives a maximum or a minimum value of f, or neither.
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51. Curves. We have already noted that the equations

x =f1(t)’
z =f3(t);

where ¢ is an arbitrary variable, define a one-dimensional extent
of points (x, y, z) which by definition form a curve. We shall
assume that the functions involved in (1) are continuous and have
derivatives.

The direction of the curve and the direction of the tangent line
at any point have been shown to be dx :dy:dz. Hence the equa-
tions of the tangent line at (z, y, z) are

xT— X Y—h Z— 2 (2)

It is customary to speak of (z, ¥, 2) and (x + dz, y + dy, z -+ dz)
as consecutive points on the curve. This is the language of infini-
tesimals, since, strictly speaking, the point (x + dz, y + dy, z + dz)
is on the tangent line and not on the curve.

Associated with the curve at each point is a definite plane called
the osculating plane. This we may conveniently obtain through
the notion of three consecutive points on a curve. Let (x, 1, 21)
be a point of the curve corresponding to ¢t = ), and let (z, ¥, 2) be
a point corresponding to ¢ = ¢; -+ k. Then, by Taylor’s series, -

R2
r=x1+ hfi’(t) + o)+ 3)

in (3) take h=dt. Then if we regard only infinitesimals of
. the first order, we have, from (3),
r=x +dx,
and if we consider infinitesimals of the second order, we have
=z +dx + 3 d%x.

Treating y and 2z in the same way, we have three points, namely,
P(zy, %1, #21), Q@1+ dx, yi+dy, 21+ de), Rz +dx+ 3 d%,
v +dy + 1 d%y, 21 + dz + 1 d®2), each of which lies on the curve,
except for infinitesimals of a certain order, and which we call
consecutive points of the curve.

Any plane through P has the equation (§ 48)

A —2z1)+ By —y) +Clz— ) =0, (4)
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If, in addition, it passes through @ and R, we have

Ade+ Bdy+ Cdz=0,
Ad’z+ Bd*’ + Cd*%=0.

119

(%)

If A:B:C are found from (5) and substituted in (4), we have
(dy d*z — d% d2)(x — z1) + (dz d%x — d*z dx)(y — y1)

+ (dx d’y — d*x dy)(z — z) = 0,

or, in determinant form,

xr—
dx
d%

Y—4 Z2—2
dy dz
d2?’. dﬂz

as the equation of the osculating plane.

=0,

(6)

)

The length of the curve s may be taken as the independent
is defined as a

variable in the defining equations (1). For s
function of ¢ by the integral

it
s =f Vdz? + dy? + dz2,
ty

and, conversely, ¢ is a function of s and may be replaced by s.

When that is done we shall write

dx dy o dz
x’ = = /o 2 == —
ds ds ds’
o E By
i ds? ds? ds
Then 24 y?+2%2=1;
from which e 4 Yy + 2’2 = 0.

At any point P (Fig. 40) we have three
mutually perpendicular lines of importance.
The first is the tangent line PT the direction
cosines of which are

l]_ = .’E’, n = 2.

my =y, (12)

The second is the line B normal to the oscu-
lating plane. It is called the binormal to the
curve. By (6), its direction cosines are given by

Lyime:ine=y2" —y'z 2/ — 'z’
'y — 2y, (18)
g

- -

-

(8)

9)

(19)
(1n
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If we form the identity
(yrzn — yuz/)Z + (Z’ZE” -—-'2”117/)2 + (x/yu — xllyl)'z
; - (33’2 + yl2 + 212)(“:/]2 + y112+ zuZ) — (;c’x”—l—y’y”-{—z’z”)z
and apply (10) and (11), we have, from (13),
y’z” - y”z’

lz = P 12 //2’
Va2 4y + 2
2x! — 2!
mz = 172 2 //2’ (14)
V24 y"2 42
e xlyll _ x//y' '
2= \/x/;z + yuz + 272

The third line is the line PN lying in the osculating plane and
perpendicular to the tangeunt line. It is called the principal
normal. If ls, ms, m3 are its direction cosines, then, since it is
perpendicular to both P7 and PB, we have

lsx’ 4+ may’ + nsz’ = 0,
l3(y/zr/ — ynz!) _+_ mg(z'x” - z//x/) + 71’3(1:/2// _ x/lyl) =0.

If the solution of these equations is simplified by the aid of
(10) and (11), we have

laimzing=2x":1y":2"; (15)
xll
whence Is= ’
\/xuz +y"2+z"2
yll
TRy e e
_ z//
g = \/2)"2 + yuz + 2112

The lines PB and PN determine a plane, the normal plane.
Any line through P in this plane is a normal to the curve.

We have been handling curves as defined by equations of type
(1). It is evident, however, that two equations of the form

f(x» Y, Z) = 0;
F(x, y, z) =0,

also define a curve as the locus of points the coordinates of which
satisfy both equations. This may be looked at in two ways: In
the first place, each of the equations (17) taken alone defines a
surface, and the points common to both surfaces lie on their curve

amn
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of intersection; on the other hand, equations (17) are, by the
theory of implicit functions, equivalent to the equations

¥ = ¢ @),

2= (@), (18)
or, what is the same thing, to the three equations

=i,

y=o0), (19;

z=yY(t),

which are of type (1). Conversely, any equations of type (1) are
equivalent to two equations of type (17).

52. Curvature and torsion. As a point P moves along a curve
the direction of the tangent line changes and the osculating plane
changes its orientation. The change of direction gives rise to the
idea of curvature, and the change in the osculating plane to the
idea of torsion.

To determine these we begin by deriving an expression for the
angle between a line and another line very near it. Let I, m, n
be the direction cosines of a straight line, so that

P 4m?+n?=1, (1)
and let I+ Al, m 4- Am, n + An be the direction cosines of the
line whn slightly displaced, so that

L+ AD> 4+ (m+ Am)? 4+ (n+ An)* =1; 2)
whenee, from (1),
2IAL+2mAm 4+ 2n An + (AD* 4+ (Am)%2 4+ (An)2 = 0. (3)
By (4), § 45, if A6 is the angle between these fwo lines,
cos A =1+ LAL-+m? +mAm +n?+nAn
=1—3[(AD? + (Am)? + (An)?). (4)

But cos A8 =1 — L (A6)? except for infinitesimals of higher

order, and hence, except for infinitesimals of higher order,
(A6)% = (AD* + (Am)* + (An)*.

Hence if I, m, n are functions of an independent variable ¢ and
we divide by At and pass to the limit, we have

‘dO\? ‘dl\? ‘dm’\? dn\2
() =G + (@) + (@)
or, in differential form,
d6? = di? 4+ dm? + dn®. (5)
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The curvature of a curve may be defined as the rate of change
of the direction of a curve with respect to its length. More pre-
cisely, if A6 is the angle between two tangents at points differing

by As, then A8 df
ture = L — (
curvature = Lim As — ds (8)
This may be ccmputed from (5) by the aid of (12), § 51, and
we have curvature = Vxllz + yug + 2’2,
The radius of curvature p is the reciprocal of the curvature;
whence 1 7
p= \/x/lz + ?/”2 + Z;fg ( )
Using this result in (14) and (16), § 51, we have
lo= p(y’z” y'), ma=px’ -2"x),
ol ", ®)
ne = p(xyY"” —2"'yY’),
and I3 = px'', ms=py"’, mng=pz’, %)

and from (12), § 51, and (9), just found,
l1l=g§-’ 'I?Za‘f:’,-;—?: 721’21?:§' (10)

The torsion may be defined roughly as the rate of change of the
position of the osculating plane with respect. te the length of the
curve. More precisely, if A6 is the angle between two binormals,
at points differing by As, then

A6 dE
torsion = Lim A= ds
The radius of torsion 7 is defined as the reciprocal of the torsion,
=0 that, by (), =
r N de/ ds ds

The direct calculation of this expression is tedious. We shalil
proceed indirectly as follows: The direction cosines of tangent,
binormal, and principal normal satisfy the six equaticns

W+me4+n®=1, (12)
I + mo? + mo® == 1, (13)
I3 + ma? 4+ ns? = 1, (14)
l1l2 + mime + ning == 0, (15)
lolz + mama + nyms = 0, (16

lsl1 + mamy + i3ty == 0, (17)



TORSION 123

each of the first three being the fundamental relation for direction
cpsines, and each of the last three the condition for perpendicularity.
Take (13) and (15) and differentiate with respect to s. We have
l'ls + mo’'mz + me'ng = 0, (18)
- L'l A+ ma'my 4 ne'ny =0, (19)
where equation (19) has been simplified by the aid of (10) and (16).
From (18) and (19) we have

lz' :’Inzl . ’nzl = MaNy — MiN2 : n2l1 —_— n1l2 N lgml -_ ll‘le. (20)

But from (16) and (17) we also get
l3 M3 P Ng = MaN; — M2 : 1’1’251 — ’llllz . l;:-’ml — l17)’é2. (21)

Hence b’ :mo’ :my’ =13 :m3 :ng, (22)
and therefore, by (11),
I3 =1l/, mg= Tme’, ng = Tng’. (23)

Take now equations (8) and differentiate with respect to s,
paying attention to (23). We have

l
_T_:}_= pl(ylzlf —_— yllzl) + p(y/zlll — ylllzl)
’
—_ & lZ + p(ylzlll —_— ylllzl)’

p
m !
..._:.;. .e_ 32+p(z xlll z/llx/)’
T P
ng _p’ 1 gttt
B2 nz + p(x'y’" —x'"'y").
T P

Multiply these equations in order by I3, ms, ns, respectively,
add, and reduce by (14), (16), and {9). We have

1 —_ p2[x//(y - y///z/) + ’U”(Z ! — Z”'QC')
+ Z”(”‘ 17 x/uy/)}
' yr z/
— — p2 z!’ :l/"

2" |. (24)
‘) xl/l ylll z/ll

We have come out apparently with a negative sign, but as the
sign of the determinant is not given, the sign of the torsion ig not
apparent from (24). Asa matter of fact, it is possible so to deter-
mine the positive directions of the three principal lines that the
sign of the torsion determines whether the osculating plane has a
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right-hand turning or a left-hand turning as it progresses alonyg
the curve, but this is a matter of detail into which we shall not go.
53. Curvilinear coordinates. The three equations

z = fi(u, v),
Y =f2(u) U), (1)
k4 =f3(u’ 1)),

where # and » are independent variables, in general define a surface.
For unless all three of the Jacobians J <_og,__y_)’ J <y—’—z>, and J <§’——:—t>
u, v U, v U, v
vanish, two of the equations may be solved for % and », and the
result substituted in the remaining equation. There results an

equation of the form F(z, y, 2) = 0. @)
A particular form of equations (1) is
= u,
y=1, 3)
2 =f(u’ 1)),
which is obviously equivalent to
z=f(x, ¥), €]

already discussed.
If in (1) we place » = ¢, we have a curve lying on the surface,
since % is now the only variable. Similarly, » = constant gives a

FiG. 42

curve lying on the surface. The surfaceis then covered by two fami-
lies of curves. To each point P (Fig. 41) correspond two values
of # and », and (u, v) are curvilinear codrdinates on the surface.

Consider, for example, a sphere with center at O and radius a
(Fig. 42). Let the axis of z intersect the sphere at N and let P be
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any point of the sphere. From P draw the line PS perpendicular
to ON, the line PM perpendicular to the plane XOY, and the
line OP =a. Let (r, @) be the polar cobdrdinates of M on the
plane XOY; that is, r=0M and 6= XOM. Let the angle
POS be called ¢.

Then OM = asin ¢,
x=0M cos 6 = a cos 0 sin ¢,
¥ = OM sin 6 = a sin § sin ¢,
Z=a cos .

The angles (9, ¢) are then curvilinear codrdinates on the
sphere. The curves @ == constant are great circles through N,
meridians. The lines ¢ = constant are small circles parallel to
XO0Y, circles of latitude. In fact, § and ¢ are precisely analo-
gous to the longitude and co-latitude of points on the earth’s

surface.
If in the equation for the element of arc in space,

ds? = dx? + dy? + d2?,

we substitute the values of dz, dy, dz taken from (1), we find, as
the element of arc on the surface,

ds? = E du?+ 2 F du dv + G dv?, (5)
ox\? [oy\® [0z\?
where E= <55> + <5;> + <5&> ’
VNN
Touor  ouov ' ouwow

0x\?  /oy\? E)z)z
G= <5;> + <8v> + <Bv ’
If du:dv and 6u:dv are two directions on the surface corre-
sponding to dx:dy:dz and éx : 8y : 2, respectively, in space, and
0 is the angle between these directions, then, by (4), § 45, °
. _drdx+dydy+dzdz
- ds 8s
_ E du éu + F(du 6v + dv du) + G dv v ]
VEdu?+2Fdudyv+Gdv2 VE du?+2 F du do+ G 692

cos 0

(6)
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In particular, let w be the angle between the coérdinate curves
u = ¢ (for which du = 0) and » = ¢ (for which év == {). Then (6)

grves v Fou dy °F
COS W == —=== == — (7
VG a2 VE 6u2  VEG
. VEG — F? .
whence sin w = - (8)
VEG

From (7) it follows that the necessary ond sufficieni condiitor that

the codrdinate system be orthoyonal is that ~—S u=c,
F=0. - R u=c
Consider the infinitesimal figure PQRS 7p<€>/< !
(Fig. 43) bounded by four ccordinate lines. /E‘\ v=c,
BY (5)’ . \'Il :c,‘

PQ=VEdu, PS=G dv. TG, 43

Treating this figure as equivalent to a paralielogram, except for
infinitesimals of higher order than du or dv, we have

Area PQRS = PQ - PS - sin w = VEG — F? du do.
This we call the element of area dS and write _
S = VEG — F? du dv. 1))

A special case of (1) is obtained when we have

= fl (ur 1})’
y = fa(u, v), (10)
z=10,

where u and » are curvilinear codrdinates in the plane. All results
hold. In particular, if we place v = r, v = 6, and write

x=7rcos 0,
Y =7 sin 6,
we have the usual polar coordinates, and (5) becomes
, ds? = dr® 4+ 1r? d6*
and (9) becomes dS = r dr dé.

Let cos «, cos B, cos v be the direction cosines of the normal
to (1) at a point (u, v). Then, since the normal is perpendicular
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both to the curve u = constant and to the curve » = constant, we
have, by (5), § 45, .

0x cy . 0z
—— cos — 34 2= -
ou a+8u cqs,d+au cos v =9,
x 0 oz
%cosa+a—ycos6-{—5~cos’y=0;
whence cosa:cosB:cosy=J / b,z ) : J('i’—-gf);,] <zc_,_y>
u: v \U, v u, v

The student may verify by direct expansion that

D[ e

/

. . “ (¥ 20
Hence we have cosa = \/.._m = { —
1 Z, ®
005‘13 = 7‘5—6’—_——_:; J (y p>' ‘ an
COS Y == ~m=———x {f—’--‘?i>
ﬂ F2o\u, v
Again, let us place x = fi(u, v, w),
¥ = fa(u, v, w), (12)

2= fslu, v, w),
where u, v, and w are independent variables and where

J ( %Y 2\ £ 0. (13)

U, U, W

Then equations (12) can be solved for

U = (bli’x: u, Z),
v = $a2(, ¥, 2), (14)
w = ¢s(x, ¥, 2).

Then we have three families of surfaces u = ¢, v == ¢, w == ¢3,
the intersection of which determined a point with Cartesian coor-
dinates (x, y, 2) or curvilinear cobrdinates (u, v, w). The planes
T =c, Y = C2, Z= c3, constructed for varying values of ¢i, ¢z, ¢z,
divide space into rectangular paralielepipeds. In the same man-
ner, except for exceptional points, the space is divided into six-
faced cells by the surfaces u = ¢, v = ¢z, w = ¢3 constructed for
varying values of ¢, ¢z, ¢3.
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The element of arc in curvilinear cobrdinates may be found
by obtaining dx, dy, dz from (12) and substituting in

ds? = dx? + dy? + dz?, (15)

but we have no need of writing out the general form which results.
To find the element of volume we begin by drawing from

P(x, y, 2) (Fig. 44) three straight lines to Q(z + dz, ¥ + dy, z+ dz),

R(x 4+ 8z, y+ 8y, z+ 062), and S(x -+ Az, y+ Ay, 2+ Az) and

- constructing on these as edges a parallele-

piped. Then, if 6 is the angle between PQ

and PR, the area of PRQ is PQ - PR sin 0 ;

and if ¢ is the angle between PS and the

normal to the plane PRQ, the Jength of the §

perpendicular from S to the plane PRQ is

PS cos ¢. Hence the volume of the paral- B

lelepiped is Q
PQ - PR - PSsin 6 cos ¢. P ¥ic. 44

The value of this may be worked out by the formulas of § 45
and found to be

4 (dy 6z — 8y dz)Ax 4 (dz 6x — 6z dx)Ay 4= (dx by — ox dy)Az,

or, in determinant form,

|de dy dz
+iox dy &2 B (16)
Ax Ay Az

where the double sign is to be so chosen as to make the expres-
sion positive. In this formula the lengths of the sides may be
as large as we please, and the formula is exact. Let us now, in
place of the straight-line figure, place a six-sided figure bounded
by surfaces of our curvilinear-codrdinate system, formed by tak-
ing four points P(u, v, w), Q(u + du, v, w), R(u, v+ dv, w), and
S(u, v, w -+ dw) and passing cotirdinate surfaces through these.
Then, for the point @,

or oy 2
dr = F™ du, dy= p du, dz= F du;
for R 6x—?£dv 0 --—aﬁdv 6z-——a~%dv
’ o W T oo’

and for S, Az = o= dw, Ay= w dw, Az=-— dw,
ow ow cw
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and we take the definition of the element of volume to be that
obtained from (16) by substituting these values. We have

n o b
ou ou ou
ox 0Oy 0z
dV =+ 5 0 7 du dv dw an
o o
ow ow ow
=+J (ﬂ’—z—)du do dw.

This definition seems to be based on the assumption that the
volume of the curved figure differs from that of the straight-
line figure by an infinitesimal of higher order than the one
taken. lts real justification lies in the fact that it is possible
to prove with perfect rigor that the volume of a finite solid eom-
puted by it is a number indépendent of the codrdinate system
used, where it is to be noted that

dV =dx dy dz (18)

is a special case of (17) obtained by placing u =z, v=y, w=12.
Two systems of curvilinear coérdinates are in common use.

The first are the cylindrical codrdinates z
(r, 0, z) (Fig. 45), where
x =171 cos 6, N
Yy =rsin 6, (19) P
=2
These are equivalent to taking polar o L

X
codrdinates on the plane XOY and leav- / "

ing the z codrdinate unchanged. The e
coordinale surfaces are r = ¢, concentric Fic. 45
eylinders with OZ as axis; 6 = ¢, planes

through 0Z; and z = ¢, planes perpendicular to 0Z. In cylin-
drical codrdinates we have

ds? = dr? 4 r? d6? 4 dz? (20)
and aV =rdfdrdz (21)
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The second set of curvilinear codrdinates in common use are
polar, or spherical, codrdinates (r, 6, ¢) (Fig. 46), by which

x=r7rsin ¢ cos 6, Z
Yy =rsin ¢ sin 0, (22)
zZ=rCos ¢. N
The coordinate surfaces are r=g¢, P
spheres with center at O; 6 =¢, planes r
through 0Z; and ¢ == ¢, circular cones ¢ {
with OZ as an axis. In polar coordinates 0 5 L
we have 6 V
ds? = dr®> 4+ r?sin®¢ d6> + r¥de> (23) ¥ i
and dV = r? sin ¢ dr d de¢. (24) Fic. 46
EXERCISES

1. If A;: By :Cy and Ay : Bp: Uy fix the directions of two straight
lines and Aj : B3 : Cj fix the direction of a line perpendicular to them,
prove that

Az :B3:C3= BCy; — ByC,: CiAg — CaA; ¢ A]Bz — A.B;j.

2. Find the direction of the curve x=¢ef, y=e z= Ve at the
point for which ¢ = 0.

3. Show that the curve x =a cos i, y = a sin {, z = kf makes a con-
stant angle with the direction parallel to 02Z.

4. Show that the locus of points whose coordinates satisfy simul-
taneously the equations f(x, y, 2) = 0, g(x, ¥, 2) = 0, has in general a
definite direction at each point of space, and determine the direction.

5. Find the tangent plane to the paraboloid z = azx® - by* at the
point (x1, ¥, 21). 2

6. Find the tangent plane to the elhpsmd — + =1 at the
point (xy, y1, 21). b c

Prove that the plane lrx + my + nz = p i3 tangent to the ellipsoid
2
;_v; + “l—l)—é =1if p = Va2 + b°m? + ¢*n?.
8. Prove that the plane lx + my + nz = p is tangent to the para-
bl + am?

4abn

8. Find the cosine of the angle between the normal to an ellipsoid and
the straight line drawn from the center to the point of contaet, and prove

Q.

boloid ax? + by’ =z if p= —

that it is equal to ,ZT)’ where p is the distance of the tangent plane from

the center and r is the distance of the point of contact from the center.
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10. Find the angle between the line drawn from the origin to the
point (a, u, a) of the surface 2yz = a® and the normal of the surface at
the point.

11. Find the angle of intersection of the spheres z2 + y:+22=a’
and (x — b)2+¥> + 22 =%

12. Derive the condition that two surfaces f(x, ¥, 2) =0 and
¢(x, y, ) = 0 intersect at right angles.

13. Find the point in the plane ax + by + ¢z + d = 0 which is nearest
the origin.

14. Find the points on the surface zyz = a® which are nearest the
origin.

15. Find a point in a triangle such that the sum of the squares of its
distances from the three vertices is a minimum.

16. Of all rectangular parallelepipeds inscribed in an ellipsoid, find
that which has the greatest volume. :

17. Find the point inside a plane triangle from which the sum of the
squares of the perpendiculars to the three sides is a minimum. (Express
the answer in terms of K, the area of the triangle; a, b, ¢, the lengths of
the three sides; and 2, y, 2, the three perpendiculars on the sides.)

18. Show that the necessary conditions for the maximum and mini-
mum values of f(x, ¥), where r and y are connected by an equation
P(z, y) = 0, is that z and y should satisfy the two equations

F(z, y) =0,
of oF _ of oF _
ox oy 0Oy ox

19. Find the lengths of the shortest and longest lines from the origin
to the conic ax? + 2 hay + by? =c. Find also the direction of these
lines (axes of the conic). :

20. Determine z, ¥, and z so that x?y%" shall be a maximum it
x4y + 2= N, where p, ¢, r, and N are constants.’

21. Show that the necessary conditions for a maximum or a mini-

mum value of f(x, ¥, 2), where z, ¥, and 2 are connectea by the con-
dition F(x, y, 2) =0, is that z, y, and z should satisfy the three equations

F(z, y,2) =0,
of OF Of OF _
950z 020%
ofoF ofoF _

oy 0z 0z Oy
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22. Prove that any two linear equations
Az + By + Ciz+ D, =0,
Ax + Byy + Caz + Dy =0,
define a straight line, and show that its direction is given by
BiCg — B3Cy: C14g — CyA; : AyBy — A2B;.
23. Consider the helix, or screw curve,
r=a cos 0,
¥ = a sin 0,
z=k6.
Show that it winds around a cylinder, and find the equations of its three
principal lines and of its osculating plane.

24. Find the angle at which the helix (Ex. 28) cuts the elements of
the eylinder on which it lies.

25. Consider the conieal helix

x=1{cost,
y=tsint,
z = ki.

Show that it winds around a cone, and find the equations of its three
principal lines and of its osculating plane.

26. Find the angle at which the conical helix (Ex. 25) cuts the ele-
ments of the cone on which it lies.

27. Show that if the osculating plane of a curve is the same at all
points the curve lies in that plane, and conversely.

28. Find the radii of curvature and of torsion of the helix.
29. Find the radius of curvature of the conical helix at the origin.

In each of the following examples find the Cartesian equation of
the surface, the nature of the coordinate curves, the element of are, and
the element of area:

30. * = u cos v, 33. r=a cos v,
Yy = u sin v, y=>bsin v,
z = ku. z=u.

8l.x=1u cos v, 84. r =a sin u cos v,
y=usiny, y = b sin u sin »,
z=kp. Z=2c COS u.

82. x = au cos v, 36. x = u cos v,
y =bu sin v, - y=usinv,

z=cu. z=u?
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86. Show that any surface of revolution may be given the equations

x=r cos 0,
y =r sin 6,
z = f(r),

where r is the distance from OZ of a point on the surface, and z = f(x)
is the curve revolved to form the surface. Find the coordinate curves
and the elements of length and area.

87. Let the points (x, ¥) of a plane be made to correspond to the
points (¢, 0) of a sphere of radius a by the equations
. r=kb,
y = k sech~!(sin ¢).

This is Mercator’s projection, much used in map-making. Show that
meridians of longitude and circles of latitude on the sphere become
straight lines on the plane. Show that if ds is the element of arc on the
plane and ds’ the element of arc on the sphere, then

ds = ds’.

a sin ¢

Show that angles are preserved (that is, the angle between any two
curves on the sphere is the same as the angle between their correspond-
ing curves on the plane), but that distances are magnified in a variable
manner, the magnification becoming greater the farther one goes from
the equator. :

88. Let a sphere be mapped on a plane by the equations
¢

z =k tan - cos 0.
2

@

=k ~ sin 6.
] tan 5 sin

This is stereographic projection. Show that angles are preserved and
distances magnified in a varying manner. Find the curves correspond-
ing to meridians and circles of latitude.

89. A loxodrome is a curve which cuts meridians on a sphere at a
constant angle. Show that it becomes a straight line in Mercator’s
projection (Ex. 87) and a logarithmic spiral in stereographic projection
(Ex. 38).

40. Show as a generalization of Exs. 37-38 that if a surface with
codrdinates (u, v) i8 mapped upon a surface with codrdinates (w/, v') so
that ds? = X\ ds’?, where A is a functicn of ' and v/, angles will be
preserved.



CHAPTER VI
THE DEFINITE INTEGRAL

54. Definition. The concept of the definite integral is obtained
as foilows:

In the interval ¢ = z = b (Fig. 47) assume at pleasure »
points xo = a, x1, X2, L3, - * +, Ln_1, Where ;.1 > x;, thus dividing
(a, b) into n smaller intervals. In

: S ¢
each of these intervals take a value s 3y + -"5-1
of x=¢; where 2, = §; = x;, and T, n.2
form the sum 6. 47

i=n -1

S T ) @i — ) = F(E) @1 — 0) + fE2) s — 1) 4+ - -
+7E) b —2an). (1)

Now let % increase indefinitely while each of the =, intervals
;.1 — x; approaches zero. If the sumn (1) approaches a limit
which is independent of the choice of z; or of &;, that limit is
called the definite in- Yy '
tegral of f(x) between a
and b and is denoted by —

. ‘[ bf (x)dz. A

1

In the next section a !
proof of the existence of ol
the limit will be given Pl
under certain condi- i i i
tions. Here it may be O aézéx, bz, &, o, & 2,é,2,6,2,6,0
made graphieally plau- Fic. 48
sible that the limif, exists
if f(x) is continuous and ¢ and b finite. For if f(x) is expressed
by a graph, we have a figure like Fig. 48. The sum (1) repre-
sents the sum of the rectangles of the figure, and it seems
obvious that the limit of the sum is the area bounded by the
curve, the axis of z, and the ordinates x =a and z = b. '
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Also, if f(x) has a finite number of finite discontinuities, but a
and b are finite, as in Fig. 49, the area and the integral seem
to exist. The student may accept vy
these graphical arguments or read
the next section.

55. Existence proof. Let f(z) be
a function which does not become
_ infinite in the interval (a, b), M1
the largest value of f(x) in the inter-
val (3, Zi41), and m;,; the smallest . X
value of f(z) in the same interval. ©| @ b
Form the two sums : FiG. 49

S = Ml(xl—a)+M2(x2"‘xl)'+' * '+Mn(b_xn—l); \ (1)
s=m (21 — a) +ma(xz — 1) + -+ + Mn(b — Zp1). 2
Then s < S.

Now let each of the divisions z;, ;.1 be subdivided into smaller
intervals and let the sums S’ and s’ be formed as before. We wish

to show that s < 8,
s > s
To show this suppose that the points y1, ¥e, - - -, ¥x be chosen
between x; and x;.1, as sketched in Y Y. Y,
Fig. 50. @, .
Then, in place of the term M, 1 (%; +1—%s) Frc. 50

of (1), in S’ there appear k + 1 terms, '
My — ) + Ma(yz —y1) + -+ Mea@ia —¥a). (3)

But unless f(x) is constant in the interval (x;, ;1) some of the
guantities M, are less than M;,i, the points y1, 2, - - -, ¥x being
taken at pleasure. Hence the sum of the terms (3) is less than
M1 (%;41 — x;), and therefore 8’ < S. Similarly, s’ > s. Hence
as the subdivision is carried farther and farther, S constantly de-
creases and s constantly increases. There would be an exception
only in the trivial case in which f(z) is constant between xr=¢
and z=2b.

Let us return to the sums S and s. It is evident that no sum s
can exceed M (b — a) where M is the maximum value of f(x) in
the interval (a, b). Hence all the sums s which can be formed
have an upper limiting value 1.

Similarly S cannot be less than m(b — a) where m is the mini-

C
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mum value of f(x) in the interval (a, b) and hence S has a lower
limiting value I'.

Take S” and s sums similar to (1) and (2) with the points
x; replaced by other points x;”/, and let S’"” and 8’’’ be two auxiliary
sums where both the points «; and the points x;// are used. Then
'8, 8" are sums formed by dividing the intervals used in forming
S, sand S”, s’’. Therefore, as before, disregarding the case where
f(®) is constant,

SIII < S’ sIH > s, SIII < SH’ sIII > sll
and hence, since s’ < S’”, we have
s < 8, s< 8",
This shows that any sum s is less than any sum S and therefore
I=r.

Now if f(x) is continuous in the interval (a, b), then from IV, §2,
we can take all the intervals x;,1 — x; so small that
M1 — M1 <SE
for all the intervals at the same time. Then
S—8< EZ(IE;+1 — xi) < é(b —a).’

But S—s=(lS—-IN+U' =D+ T—5s)
and, since the terms on the right of this equation are all positive,
each must be less than e¢(b — a). But I’ — I is a constant. There-
fore S—I'<elb—a), ' -1=0,1I—s< elb— a), whence

Lim S=Lims=1.

We have proved the existence of the limit of the sum (1) when
f(x) is continuous and the interval (a, b) is finite. Let us now
suppose that f(x) has a finite number & of points of finite dis-
continuity such as are pictured in Fig. 49.

Let the interval (a, b) be divided in any manner, and let the sum
of the lengths of the intervals in which the points of discontinuity
lie be I. If the intervals are small enough, only one point of dis-
continuity will lie in any one interval. In these k intervals let
the difference between the largest and the smallest value of f(x)
be B. The sum of the lengths of the intervals in which there is
no point of discontinuity is b — a — [, and the difference between
M1 and m;, in each of these intervals may be made less than
€ by taking the intervals sufficiently small.

Hence, using S and s in the same sense as before,

S—s<eb—a—1)+ Bl
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Now both € and [ approach zero as the division is made smaller,
and therefore . .
Lim S = Lim s.

We have limited ourselves to a finite number of diseontinuities.
As a matter of fact, the reasoning applies to an infinite number
provided I—0. A discussion of this case would necessitate a
treatment of point sets, which we shall not give.

We have proved that S and s approach the same limit under
the hypotheses made. It is obvious that the sum (1), § 54, is
intermedlate in value between S and s and approaches the same
limit.

We have now the following theorem:

If f(x) is a function continuous tn the finite interval (a, b), with
at most a finite number of finite discontinuities, the definite integrol

f Sflx)dx exists.
56. Properties of definite integrals. As immediate consequences

of the definition of the definite integral we have the following
formulas :

[ etz = [ e, @
b b b
jﬁmm+mmw=fﬁ@m+jhma, @
fﬁ@ﬂw=ifk@w @®)
b a ’
b c b
‘[fwﬂxﬁfwaxﬁff@W% @)

jﬁmM=w~W@.m<£<w ®)

In proving (3) we have to notice that to interchange the limits
a and b is to change the sign of each factor x; .1 — x; of (1), § 54.
In (4) the order of magnitude of the quantities a, b, ¢ is imma-
‘terial by virtue of (8). It it of course understood that f(x) has
the properties required in § 55.

To prove (5) we shall assume that f(z) is continuous and not
constant and shall let M be its maximum value and m its mini-
mum value in the interval (a, b). If f(£;,1) is replaced by M in
each term of (1), § 54, the sum becomes M (b — a), which is larger
than the sum as written. Also, if f(£;,1) is replaced by m, the sum
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becomes m(b — a), which is evidently smaller than the sum as
written. This is independent of the number of small intervals
of (a, b). Hence b
m(b — a) <[f(x)dx < Mb-—a);

whence ‘ f bf(x)dx = u(b — a),

where u is some number between m and M. But by II, § 2, since
f(z) is continuous in the interval (a, b), f(x) takes the value u for
some value £ of z in the interval. Hence (5) follows. Graphxcally'
this formula says that the area under ¢

the curve y = f(x) between x = a and _
z=2> is equal to that of a rectangle
with base b — a and altitude equal to
the height of some point of the curve

(Fig. 51). This is obviously not neces- /| #
sarily true if f(x) is discontinuous.
57. Evaluation of a definite integral. o2 : 3 X

Let f(x) be a continuous function in
the interval (a, b). Take x, any value
in that interval. Then, since the integral is fully defined when
the limits @ and x are given, and that value depends upon the
limits, we have, by the definition of a function,

ffww—¢w
z+h
Then (@ + k) — d(z) = fWM—j}mm

:;+h

= f(x)dx

x

=hf§), @<E<z+h)

where the transformations have been made by the formulas of

the previous section.
Our result shows that ¢(2) is a continuous functlon since

I;lgl [¢(x+ k) — ¢(x)]=0.
Lim ¢+ h) — o) _
A= 0 h

that is, %¢m=ﬂn &

Fia. 51

Also L m f(§) = f(x);
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If, now, F(x) is any function whose derivative is f(x), then, by
II1, § 6, ¢(x) = F(x) + C, and we have

“t)de = F(z) + C.

If x = a, then, by the definition of the integral, the value of
the integral is 0. Hence C = — F(a). Using this value of C in
our last formula and placing the upper limit x equal to b, we have

finally b
f f@)dz = F(b) — F(a). @

58. Simpson’s rule. When the integral cannot be evaluated in
elementary functions, recourse is sometimes had to approximate
integration. The most obvious thing is to expand into a series
and integrate term by term. I'rom this method we may develop
a rule known as Simpson’s rule. Let

f@)y=a+ am(x—a)+a@—a)’+ax—a)®+R (1
and let us integrate between o« and a + h, omitting the remain-
der R. Then, approximately,

vuth , 3 4
f@)dx = aoh + ?-]—;—— + 5 aZh + E}f{_ 2

a

Let y; be the value of f(x) when x = a, ¥2 the value of f(x) when
r=a-+" h, and ys the value of f(x) when x=a +k (Fig. 52).
Then, approximately,

Y1 = Qo,
kB ah®  agh®
U2 = ao+ 013 + “9*— -+ —%—;

Y3 = a0 + alh + azhz + ash®;
and from (2) it is easy to verify that,
approximately,

a+h

J f(x)dx——(z/1+4yz+yz) 3

This is merely approximate, since we have omitted B in (1),
but the error made is of the order of A° and is negligible for small
values of h.

Consider now the integral

j‘: bf(z)a’x,
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where b (Fig. 53) is too far from a for (3) to be applied to ad-
vantage. Let the interval (a, b) be divided into 2 » equal parts
—a b—a Y B
5 » and take h = - = two T
of such parts.

The integral may be com-
puted approximately by (8) for
the intervals

(a, @+ h), Yy Yo Y| Y| Yol Vs | Y| Y| Yo
(@+h,a+2h), - ol a b
and theresultsadded. Weobtain Fig. 53

b b—
[ e =22 i+ dye+ 2us+ Aya+ 25 -
+4y2n+y2n+1)-

This is Simpson’s rule for the approximate value of an integr:
It may be applied to computing an area where the ordinates m: '
be measured from a carefully drawn diagram or computed frc
the equation of the curve.

59. Change of variables. Given

fa bf (x)dz,

let it be required to place x = ¢(t), where x =a when ¢t = a
x = b when t ={;. A direct substitution gives

&
[ M1’ W,
but this needs justification. For ‘
[ H@de = Lim 5, @101 — ) = Lim igoAz,

and dz; is the principal part of Ax;. The prineipal part of £
however, may be substituted for Ax; by theorem 1I, § 12. 1
final work is therefore correct. .
The proof of 1I, §12, demands that the infinitesimals be
positive or all negative, but it is usually possible to split -
interval (a, b) into regions in which the infinitesimals are alw

positive or always negative so as to apply the theorem. D
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60. Differentiation of a definite integral. The discussion of § 57
shows that the definite integral is a function of its upper limit b
and of its lower limit a. Also, if f(x) is a continuous funection of z

‘when = @ or x = b, from (2), § 57,

o (° o (°
5[ Jou=10, = [j@E=-s0.  ®

Suppose, now, that @ and b are constant, but that f(x) involves

2 parameter o which is constant in the integration but may vary

\

-

2

form different integrals; then, by definition of a function,
b
[ 1z, ez = 9. (@)

We shall show that in general ¢(a) may be differentiated by
. fferentiating under the integral sign; thus,
| d bof(x
i D A |
' .:\To prove this and, at the same time, to determine conditions
1de: which the formula is true, we proceed as follows:
From (2) and the formulas of § 56 we have

b b
Ap= ¢+ Ac) — $(@) = [ S, o+ Aayiz — [ Sz, codr

= f b[f(x, a+ Aa) — f(z, a)ldz. (4)

Graphieally ¢(a) is the area ABDC (Fig. 54) and A¢ is the
. & CDr E. If f(x, o) is a continuous function of x and o when
= b and « lies between two values, say ap and «;, then, bv

‘H we may take A« so small that Y

a2 |f(x, a4 Aa) — flx, @) < € FTJ}ZT)A“‘
. all values of z in the interval g )
%). Graphically this means that
.* width of the strip CDFE i3 x
b than e for ill points between A O] A 3
v. .B. Therefore, from (4), FiG. 54

IA¢i < E(b - a)y

¢(a) is a continuous function.



142 THE DEFINITE INTEGRAL

b y N
From (4), A¢ (7, a4 L) - [z, ) dr. 5)
A(X I3 Ao
o
Now if (% exists and is continuous, then (5) is
2 _ [vf : .
Z(-I— «b[a‘ 2’—6; dr 4+ [ € dzx. (6

The last integral in (6) is less m absolute value than (b — a) i
7 is larger than any value of € in the interval (a, b). If éi is con |

tinuous, the value of 5 may be made as small as we please b~
taking e sufficiently small. Hence, taking the limit as Aa —(

in ‘6). we have fb(;f

which is formula (3).
Now let us suppose that we have

f Fo, @)dz = $(a), &

where ¢ and b are functions of o which take increments A anc-
Ab. respectively, when o is increased by Ac.
~b + ab

Then ¢(a+ Aa)= flx, 04 Aa)dx

4+ A

b
= f(x, a -+ Awx)dx —ij(:r a+ Aa)dx

a+ A

b4+ Ab
[ e et dayas,

a

and A¢ = flx, a -+ Aa)dz + [[f(.c. a+ Aa) — f(x, a)ldz

a -+ Aa

~b-r Ab
L / f(z, o + Aa)dz. (&
v

Graphically A¢ is represented in Fig. 55 by the unshade
border of the area denoted by ¢{a), and the three integrals in
(8) give the areas of the strips EAHG, CDIH, and BF.JI respec-
tively. We may apply (5), § 56, to the first and last integrals of
(8) and have

b
A = — Adf(t, a + Aa) + f [z, a+ Aa)  f(z, a)]dz
-+ Abf(€s, « -+ Ax).
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Dividing by A«, letting Aa —- 0, noticing that £1 —»a and"
£2 -+ b, and usmg the result (8), we have

2 [t 100 9
Y d‘v a -'———f(a)a) ( .
IdJ Yy=f(x,a+Aa) ‘? i
T
- pertea) N
;z \__a
O]
&lF \
O] athaa bbiab X :“'z[
Fi1aG. 55 F1G. 66
As an illustration take
P(a) = f > + 5 d (10)
If a=0, () = o
If a0, o () =tan*'1 "

The function x—z_%_—;z is not continuous at the point x = 0, « = 0,
and the function ¢(«) has a discontinuity when « = 0. In fact,
() aﬁproaches + g according as « is positive or negative. The

graph of the function is shown in Fig. 56. .

If we differentiate under the integral sign in (10), we have
1

, a* — o x ] 1
¢'e) = | ?Eflﬁdx—[" m]o—‘ it a?

which 1is true for all values of « except a = 0.
The principle of differentiating under the integral sign may
sometimes be used to evaluate a definite integral. For example,

take
d(a) mf log (1 — 2 & cos z +4- a?)dx. (11)

ﬁd._?._ T —2cosx4+ 2«

da Jo 1—2acosz+ a?
£

1 [ 11—«
“aJo [1—1———2acosx+a2]dx

_T_2 1te w)]
- [tan <1‘—Otwl 2/ Jo

dx
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. 1
As z varies for O to r, —— to tan — varies through positive values

1— 2
from 0 to o when — 1 < « < 1, and i+ Z tané varies through

negative values from 0 to — o whena < —lora > 1.
Hence

14+« >]" T
Y Belll et —_— —
v[tan <1~ tan2 =3 when l1<a<l,
and [tan“<1io—‘tana—c>] =T when « <—1lora>1L
) 2/ Jo 2
Therefore
—¢—0 when —1<a <1,
da
and ——?:2—7—r when a<—1 or a>1;
da o
whence $=C; when —1<a<l,
and ¢=mloga®+Cs when a<—1or a>1
We may determine C; by placing = 0 in (11). Then C; =0.
Hence 4 -0 when —1<a<1. (12)

To determine C; in the same manner we should need to sub-
stitute in (11) a value of o greater numerically than 1. This is
not convenient. Instead, we will place

¢
a_%,where— 1< B8 <1. Then
9@ = [ Tiog (1 —2 B eos .+ 8
log B*1dx

. 0

= -7 103‘ ﬂz -1 O 1 @
=mwloga? when a<—1

or a > 1. 13) F16. 57

Therefore Cz = 0.

The definition of ¢(a) is now complete. Its graph is shown
in Fig. 57. !

The foregoing discussion does not apply when a = 4 1, since
the conditions for differentiability are not met. We shall see later
(Example 2, § 65) that in this case ¢(a) = 0, so that the function
is continuous for a = + 1.
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61. Integration under the integral sigr. The possibility of differ-
entiating under the integral sign leads conversely to the possi-
bility of integration. Let

$(a) = f 1z, a)dz, (1)

where a and b are constants. Multiply by da and integrate with
respect to o between ap and «. Then

f “¢(a)da = f ada f bf(a:, a)dz, (2)

where the integratjons on the nght are to be carried out from
right to left.
On the other hand, consider

B(a) = f bdx‘ f “fx, a)da. ®)

We wish to show that (3) and (2) are the same. We differen-
tiate (3) with respect to @. By the previous section the differen-
tiation on the right may be carried out under the integral sign,

and by (1), §60, 5 /p«
= | @, ayda = f(a, o).

Hence, from (3),

b
(o) = [ Sz, @iz = $(@). @
Then . f“<1>’(a)da=[a¢(a)da,
or P(a) ==f¢¢(a)da, 5)

since, from (3), ®(ap) = 0. Hence, by replacing the two members
of equation (5) by their respective values as given in (3) and (2),

we have b « ve b
[ de | flx, o)da =f daf f(z, a)dz, (6)

as was to be proved.

This may be considered either as proving the method of inte-
grating under the integral sign or as showing the possibility of
interchanging the order of repeated integration.

For example, consider

1
ﬁx“dx:a—i——l—. a+1>0)
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Multiply by da and integrate between « and b. Then

b L * dee b+ 1
fa"dafo\x dr = aa—{—'l—loga—{-f

But, by (6), the left-hand side of this equation is equal to

fd:cfx da = adx,
0 logx

and therefore f
. 0

62. Infinite limit. It is possible to consider definite integrals
with the upper limit infinity if we place by definition

) b
f f(x')d:c:%im f(x)dx. )

The proof of the existence of the integral now breaks down,
and there is no guaranty that the limit in (1) actually exists.
When it does, we say that the integral (1) converges. It is impor-
tant to know something of the conditions under which this takes
place.

If it is possible to evaluate the definite integral by the formula

[ twrte=rd) - F @),

where F(z) is an elemmentary function which may be explicitly
found, the convergence of the integral (1) may be determined by
examining the behavior of F(0) as b increases indefinitely. For

xample, consider
€ p f bdx
. L xk

b da
1f k = 1, this integral is f -g =log b;

v
f"d:z: i 1
H

if k+1,it1s ST RIS

As b — 00, log b~ o0 and b'F—+ 00 if & < 1, while b'~F— 0 if
L > 1. Hence we have the following thecrem :

© di . o
1. The integral }, — converges if k > 1 and becomes infinite f
=1 =

1
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We may now prove the following theorem :

II. When the integral f Sflx)dx can be written in the form
¢(~L>

. Xk
then (1) if ¢(x) is less in absolute value than a finite number M for
sufficiently large values of x, and k > 1, the integral converges;
(2) if ¢p(x) s greater in absolute valie than a positive number m for
sufficiently large values of x, and k = 1, the tntegral does not converge.

’

To prove this let us write

jfu)dx—— mdx+[ flada ;

then if f(x)dx converges, it is necessary and sufficient that

? f f(w)dar; < € for sufficiently large I. Consider, then, the first

part of the thmrem given above. We have

j f(l')d.(} . f ﬂﬂd‘; Mf”’d.r kltkl

and by taking ! sufﬁcxent]y large this ecan be made less than any
quantity e.
On the other hand, under the second part of the theorem

,/ ﬂl)d‘r‘:: /wgd)ﬁx\) d‘T‘ ijg’

where the last integral incrouses br,yond any limit.
As examples consider the iollowing, all of which are integrals
which cannot be evaluated by elementary means.

Example 1. f ® de .
Ja V(1 =221 — k)

If we take () = e,
VE-1)E-#)

it is evident that as x —> 00, Hix) *-~>}1;; and hence ¢(x) is finite as

. 2 .
x —> o, and, for sufficiently large x, & (x) < % or some other quantity

chosen at pleasure. The integral is f G )dx, and consequently
converges.
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Example 2. j; “e== dr.

Take ¢(x) = z%e~*". Then Lim z%~* = 0 (§ 10) ; and, for sufficiently.
¢(x)

dx, which

large values of x, ¢(x) < 1. The integral is f
eonverges.

sin x
dx.

Example 3. jo‘ ®

No conclusion can be drawn from the theorem for this integral.
If we place ¢(x) =sin z, the absolute value of ¢(x) is always less
than 1. But k=1, and therefore the first part of the theorem does
not apply. On the other hand, there is no positive quantity m < ¢(x)
for all large values of r, and therefore the second part of the theorem
does not apply.

The third example shows that the theorem we have given
is not sufficient to determine the convergence of all integrals,
but its range of applicability is large. The convergence of the
integral in Example 3 may be established in another way. If we

) sin o . . . .
graph the function y = 7 the graph consists of portions alter-

nately above and below the axis of «, and 1t is evident that the
integral may be written

~~
~—

*®sin o
j —dr=U — U2+ Uz —Uu;+---, 2
o X

where u; is the absolute value of the integral

kr
sin «
f PRl
k-Dx &

1
Now as — is constantly decreasmg without limit, it is evident

that
nret < Ur and Lam g = 0.
k- w0
By § 29 the series (2) converges.’ _
63. Differentiation and integration of an integral with an infinite

limit. The question naturally arises, When is
o) = [ (o, a)ds @

a continuous function of o and when may it be differentiated
under the integral sign? We shall not endeavor to give a
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complete answer to this question, but will give certain rules which
are sometimes applicable. We shall assume that f(x, ) is a
continuous function of z and «a for any value of x between a
and oo and for any value of « in an interval (ao, a3).

Let us write (1) in the form

[ 1@ @ar= [, arda + [tz e, @

where ! is a large but finite quantity. If, now, e being any as-
signed positive quantity, it is possible to choose ! s that

|j‘mf(x, a)da:i< € 3)

for all values of « in the interval (aq, i), then (1) is said to
converge uniformly in the interval (oo, a1). We may then prove
that (1) is a continuous function of . For we have

86 = [1f@, o+ ) ~ f(z, Ve + [ Sz, o+ Az

- V[ ”f(x, a)dx.

By hypothesis we may so choose ! that each of the last integrals

is less absolutely than g-

 fx, @+ Aa) — fz, )| <

We may then choose Aa so that

3(1 a)’
since, by hypothesis, f(z, &) is a continuous function.
Then [Ad| < ¢

and hence (1) is a continuous function of «.

To differentiate (1) we shall also assume that f. (:r, «) is a con-
tinuous funetion of x and « for all values of x in the interval
(a, ) and for all values of « in the interval (o, 1), and that

the integral f fo(x, a)dx eonverges uniformly.

Let us divide the interval (a, o) into subintervals (@ 4-n -~ 1,
a+n), where n=1, %, 3, . - -, and write

f”“ S, a)dr = wy(e).

a4+n-—-1
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‘Then, by § 60,
d _ (" of(z, @)
7 u,(a) = a+.n_1_—9a dz.

n=a

Now [ iz =S we), @

n=1

and the term by term differentiation of the series (4) gives

nioo‘[avai—n ?—de. \ (5)

- -1 Oa
n=1 +n-1

The series (5 is uniformly convergent because of the hypothesis
that f wg%';—a) dz is uniformly convergent. Hénce, by Ex. 36,

p. 62, d © _ (20f(z, )
£ f f(z, a)dz = f L2 o, (6)

In order to apply the theorem it is necessary to be able to deter-
mine whether the integrals involved converge uniformly or not.
This may often be done by finding a positive function ¢(x) such

that o) = f(2, @) @
for all values of z in the interval (I, ©) and for all values of « in
the interval (a0, o). Then if

l‘ oOd>(ar:)da¢

converges, the integral f f(z, a)dx converges uniformly. . This
[

is obvious from the relation

[ f(x, a)dzx <j o(x)dr < ¢,

where ¢ can be as small as we please by taking ! sufficiently great.
As an example, consider

®eTgin 1
f —dr. (0 < ap < a) (8)
0 x
e *"sin x .
Here f(x, a) = — folx, @) = — e “*gin 7,
x

and f and [, satisfy the conditions of being continuous functions
of zand o if @ > 0and 0 < x < [, where [ is any positive number
no matter how large. We may write

e “sinx we “sinx

2 x*
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Now Lim xe~** = (. Therefore for sufficiently large values of

xr—

x, xe~F < ge~*® < 1; and since |sinp x| =1, we have
1

< —

x2

re~“rsin x

O<ap <@
22

Then g%gis the function ¢(x) of (7) and condition (7) is met,
and therefore (8) defines a continuous function of a.

2, —ax 3
. . wr x%e"“*sin x
Again, by writing e ““sinz = —F
. . 1 '
we see that for sufficiently large values of x, |[e=**sin x| < = and
x

hence f.(x, @) meets the required conditions. Therefore formula
(6) holds for the integral (R).

An integral with an infinite limit may be mtegrated under the
integral sign if the condition of uniform convergence is met by
the integrals involved. This is proved as in § 61.

64. Infinite integrand. In our discussion of the definite integral
thus far it has been necessary that f(x) should remain finite in the
interval of integration. It is the purpose of this section to examine
certain cases in which f(x) becomes infinite at one or more points.
It will be suthcient to examine the case in which f(x) becomes
infinite at the upper limit x=5. For if f(x) becomes infinite
when x = @, that limit may be made the upper limit by changing
the sign of the.integral (§ 56); if f(x) becomes infinite at any
intermediate point ¢, we may use (4), § 56, and examine each
integral separately.

If, then, f(b)—> 0, we define the integral by the formula

b b—e
[ flx)dx = Lim [ flx)dz. )

e»Culg

When the limil exists, the integral is said to converge.
-When the integral may be evaluated by the formula

fbf(x)dx = F(b) — F(a),

the convergence may be examined by considering the behavior of
F(b— ¢) as e — 0. For example,

tdr . G dz N Sl
o Va2 12  odo Var—2a? o a
C

t\‘)\!ﬂ
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o . bme  dx
Again, consider f
a

=l
If & = 1, this becomes

b-e dx

I m=~log6+108(b—a)'
fb“ dr __(b—a)F— et
e (b—x)F 1—-k

From these results the following theorem is at once evident:

if k1,

b .
I. The integral f ~——-4£~—; converges if k <1 and diverges if
k=1 « 0—2)
From this we may deduce the following theorem :

) b
IT. When the integral f f(x)dx can be written tn the form

b ¢(x)
dz,
a (b - x)k
then (1) if, for values of x suffictently near b, ¢(x) is less in absolute
value than a number M, and k < 1, the iniegral converges; (2) if,
for values of x sufficiently near b, ¢(x) s greater in absolute value
than a positive number m, and k = 1, the inlegral diverges.

1 dx
For example, the integral f may be
P R SV (1 —22)(1 — k2x?) Y
. 16 ‘ 1
written , dx, where ¢(x) = , and
Jo V1—2z () V(1 4+ z) (1 — k2z2)

. ra o
therefore converges. The integral J dz
evidently diverges. 0 (z—a)V(1—a) {1~ k%)
By repeating in essence the proof in the previous section we
may show that an integral with infinite integrand f(b) may be
differentiated or integrated under the integral sign provided the
functions f(z, ) and f.(x, «) are continuous and that the con-
ditions for uniform convergence are met; thatis,

lff(x,a)d:r, <n and ]f-—dx1<.,)
(E4) | l&a :

for all values of « between ag and «; when [ is chosen sufficiently
r.ear b, and 7 is any assumed positive quantity.
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85. Certain definite integrals. We shall discuss in this section:
certain definite integrals of importance by means of certain spe-
cial devices.

Example 1. fo ®e="dz. This integral has been shown to converge.

Let I =j(;be“" dz =‘/0‘ Pe-ut dy. 1

‘We may use either y or x in writing the integral, since the form of the
function and the limits only are essential. Then

1*= j;,be':’ dacfo "= dy =fobfobe_w* Wz dy, @)

where the double integral is taken over Y
the square OACB (Fig. 58).

Since all the terms of the sum in (2)
are positive, the value of I? is greater B
than would be the same sum taken over ¥~0
the quadrant of a circle of radius OB =1b
and less than the sum taken over a
quadrant of radius

— A :
0C =bV2. 5 — X

Fia. 58

Q

In summing over the quadrants we
may use polar codrdinates and have

g b -~ 2 g b2 —rd .
f;"/;e_ rdfdr < I <‘f;/‘; e~ "rdfdr;
T ~b 2 o T 25t
whence Z(l_e yY< I <Z(1——e ). 3)
Now let b — . By definition I approaches f;me*" dz, and the first
and last members of the inequality (3) approach Z— Therefore
[P dz =3V, )
Example 2. fE log sin x dx. The function log sin « becomes infinite
0 .
when x = 0 ; but we may write log sin z = %P—' where ¢ (x) = rtlog sinz,
x

and show by § 10 that Lim ¢(x) = 0. Therefore, by § 64, the integral
converges. il

A _ s . (s _T_
Let u—j; log sin :cdr—j‘; log cos y dy. ( =3 x> (5)
We may replace y by x in the last integral of (5). Then
2 u = {2 [log si 1 dz= (Zlog sin 2 o dr — [ %log 2 dz. (6
2u (; [log sin x + log cos x]dx j; log sin 2 z dx f; og )
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Integrating the last integral of (6) and placing 2 x = z in the next to
the last integral, we have

T

2
u+2

1 pm .
logZ—E‘f; log sin 2 dz
-1 ZZr : 1" :
= j{; log sin 2z dz + 5]7; log sin z dz. )
2
In the next to the last integral of (7) we place z = x and in the last
integral we place z = er- 4- ¥ and use (5). Then
2u+—72[log2=-21—u+%u;

whence U= — g log 2. (8)

This result enables us to complete the discussion of (11), § 60. For
if we place & =1 we have

¢(1) =f;"10g 2(1 — COS x)dx = j(;ﬂlog <4 sin? g)d‘r

= log 4£"dx+2£"10gsin-§dx

=1rlog4+4foélogsinydy <y=:f>

=1rlog4+4<-—7§rlog2>-—70.

—&X o3
Example 3. j(;”g-——jm—z dx. (a > 0)

We have seen that this integral defines a continuous function of «
and that it may be differentiated under the integral sign." Then

» e~ gin x
¢'(@) =— j(; "¢~ gin z dz
= — 1 .
14+ a?
Therefore ¢=—tan'a+ C.

Nowas a—>o, ¢(a)-—>0, and therefore C =

?

1K ]

1
whence ¢(a) =cat™ o = tan~! —-
(¢4
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gin x
X

dx.

Example 1. ‘f;w

This integral arises from Example 3 when o = 0. The evaluation of
Example 3 depends, however, upon the assumption that a % 0. We
cannot place o = 0 in Example 3, therefore, without first showing that
p(a) is a continuous function of «. This we may do as follows. We

write e
w € sin
o) = f — T .
0 X

$(0) = f’”s—’fi—f d.

Jo

We have already shown that ¢(a) and ¢(0) converge. In fact, we
have, as in Example 3, § 62,

bie) = 1(@) — 1s(0) + ua(@) = -+ - & wnla) F - -,
$(0) = (0 — ua(0) +u5(0) — - - L un(®) F -+ -,

where the limits of integration for u;(«) and u;(0) are the same. Let
¢ be any ussigned positive number. We may take a finite number of
terms m 80 that the remainder after n terms in each of these series is

less than § Then
pla) — ¢(0) = lTug(e) — i (0)] — [ua(e) — u2(0)] +e
+ [upl@) ~ u (0] + %,
where |7 < 23—6 - Now each of the functions u:{c) i3 a continuous
function when a = 0. Hence we may take « so small that each of the

terms | uz(a) — ue(0)] < ':;E; Then

[d(a) -- (D) | < ¢,

which shews that ¢(«) is continuous at a = 0.

i ' 1
Therefore r »8 T dx = Lim <tan“1 ~\ = 35-
vo @0 o 2

- )
Example 5. ] g o,
Jo

Place ax =vy. Then, by Example 1,

o et 1 pre ™
f e e = [ e Vi ddy e
Jo avo 2o



156 THE DEFINITE INTEGRAL
® ain 12 das ® 2
Example 8. fo sin x*dx and f:’ cos z° dx.

To obtain these integrals we shall use certain properties of complex
numbers, thus anticipating Chapter XV. This chapter may be con-
sulted in advance or the reading of this example may be postponed.

By (5), § 26, e~ = cos x? — 17 sin z2.
‘We shall therefore study ’
P2 g = [ Poos 22dx — i [ sin 22
f;e dx_.f; cos x*dx zf(; sin z? dzx,

which can be shown to converge by showing, as in Example 3, § 62, that
each of the two integrals on the right converges.

® . Vr
By Example 5, f e dr = ——
. N o z\f
Now — = -» as may be verified by squaring both sides of the
\/;‘ 142

equation, and 1‘

Hence f cos z2dx — zf sin z2dx = \/- 1-

and therefore, by equating real and imaginary parts,
* 2de = “sin 22 dx = l\/l.r
j; cos & dx—j; sin x dat._z 5

66. Multiple integrals. Let a region R (Fig. 59) be given in the
ry-plane, and let it be divided into  y
rectangles by lines

i

rx=2; (t=060,1,2,---,n) o
and y=yr. *k=0,1,2,.---, m) < ]

Most of these rectangles lie inside / R
the region R, but at the boundary 7
some will project out of the region. { .
Consider any rectangle, with di- . \ <
mensions Z; .1 — &; and ¥ 41— Yk,
which_lies either wholly or partly O
in R and let (£;, nx) be any point in
this rectangle and also in R if the rectangle extends outside of R.
Let f(x, y) be a function which is continuous in the region R.
‘Then it may be shown that the sum

t=nk=

E Zf(fu k) (@ig1 — ) Wr 41— yk)

i=0 k

X

F1G. 59
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approaches a limit as » and m increase indefinitely and each of
the differences z;,1 — z; and y,,1 — Yy approaches zero. We shall
omit the proof, which proceeds on lines analogous to those used
in § 55. This limit is expressed hy

f ff(x, y)dz dy, @

{R)

and the function f(z, y) is said to be summed over the region R.
It is assumed that the student is familiar, from his study of
elementary calculus, with illustra-
tions of the use of double integrals.

In the foregoing discussion the Yy
region R may be any shape what-
ever, with any number of distinet
boundary curves. In case the region
is of the shape sketched in Fig. 60,
where any line parallel to OY meets
the boundary curve in two points for 0 Frc. 60
which the values~of y are y; = fi(x)
and y2 = f2(x), and the extreme values of r are x = a and z = b,
the integral may be evaluated by the formula

Sf s vz du=[ 'dz REOLT @

R
or in case a line parallel to OX meets the boundary curve in two
points z = x;, £ = x2, and the extreme valuesof yarey = ¢, y = d,

then also
f j S, i dy = f ay [ f(x V)dz. ®)

In case the area over which the integration takes place is a
rectangle bounded by the lines x =a, x=0b, y=¢, y=d, for-
mulas (2) and (3) yield the result

~b d d b
S (s, vy = [y [ iz, vy, @

which embodies the principle of interchange of the order of
integration.

Formula (4) is always valid if the limits a, b, ¢, d are finite and
f(z, y) is continuous in the rectangle. Without formal proof this
statement is geometrically plausible if we consider the integrals
in (4) as‘definirg a volurne.

Y
X

9 b e

[ R —.
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If one or more of the limits in (4) becomes infinite o
has discontinuities, the formula is not necessarily A
student will often meet examples, however, in which (4] 1
to such cases. This can usually be justified by the theoren
if f(x, ¥) dges not change its sign, formula (4) holds, provide

integral f f(x, y)dy is a continuous function of z and the inte-
el i
gral J f(z, y)dx is a continuous function of y, except perhaps

for isolated points. To determine when the simple integrals
satisfy the conditions demanded, the tests of § 62 and § 64 are
usnally sufficient.

The integration over a more complicated region R may be
carried cut by separating that region into smaller regions of the
simpler type just considered, but in this text we shall be more
concerned with the properties of a definite integral than with its
evaluation, which is a subject for the elementary calculus.

We may write the integral (1) in the form

[f 5 waa, ®)

®
where dA is the element of area dx dy. In case the codrdinates
(x, y) are replaced by curvilinear codrdinates (u, v), then, as
shown in § 53, dA is to be replaced by

£J<Zﬁ>du Ju (6)

the sign being so chosen as to make the area positive. On the
other hand, in f(x, ¥) we have simply to make the substitution (5).
That the integral obtained in this way is exactly the same as the
original we shall leave 2s sufficiently plausible, without making
the careful analysis necessary for rigorously proving this.

.. Again, let a region of space R be divided into rectangular
parallelepipeds by planes parallel to the codrdinate axes in a
manner analogous to the division of the plane. Let the vertex of
one such parallelepiped, which lies either entirely or partly in R,
be (z,, ¥,, 2x), let its edges be ;1 — %i, ¥jn1 — ¥j, Zks1 — 2k, and
let (£;, mj, {x) be a point in its interior and in R. Then, if f(x, ¥, 2)
is a fungtion continuous in R, the sum -

Ezsz(gi" 3 §) (@is1 — 2) i1 — Y5) @ra1 — 2a)

* De la Valée Poussin, Cours d’Analyse, 4th ed., Vol. IL, p. 28.
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approaches a limit as the number of parallelepipeds increases
indefinitely and the edges of each approach zero. This limit is

the triple integral
: ff flx, y, 2)dx dy dz. )

(R)
The region R may be of any shape. If it is such that a line
parallel to OZ enters the region through a surface z, = fi(z, ¥)
and leaves it through the surface z2 = fa(x, ), then (7) may be

written e
[y | st v 0 ()

8)

where the region S, over which the double integral is taken, is the
projection of R on XOY.
The triple integral (7) may be written

ff flx, . 2dV, (9)

R
where dV is the element of volume dz dy dz. 1 it is desired to
e curvilinear coordinates (u, », ), as shown in § 53,

dV =+ J ( ;f f’——f—) du dv dw. (10)
We have already seen that in cylindrical cosdrdinates we have
4V =rdfdrdz, (11)
and in polar coordinates,
dV =r%sin ¢ d d¢ dr. (12)
EXERCISES

1. If f(x) is an odd function, that is, if f(— x) = — f(x), prove that

faf(x)dz =0.

~a
2. If f(x) is an even function, that is, if f(-— x) = f(x), prove that
a a

£af(x)dz = 2]; f(x)dx.
8. If f(a — x) = f(z), prove that

[@de =2 [ fzde.
4. Show that 2k"f(sin dx =k [(;z"f(sin x)dz. {(k positive integer)
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5. If f(x) has a period a, that is, if f(x + a) = f(x), prove that
fk“f(q;)dx = l?f“f(x)d:c. (k = any integer)
0 0
8. Ifa< b, and [, (%) < f2(x) < fa(x)for all x valuesin the interval {a,b),,

hat » : :
prove tha f”f,(x)dx < [r@dr < [ *f,(x)dz.
a . a a

7. If m and M are the smaliest and the largest values of f(z) in the
interval (a, b), and ¢(x) > 0 in the interval, prove that

m [ *¢(x)dz < [ @) @)ds < M [ p)dz

and therefore

[ 1@é@dz =1 [ d@dr. @ <<

3
8. Evaluate f 3(1 + 22 dx
0
by Simpson’s rule, taking n = 3.
3 dx
9. Evaluate . [; zm‘{)—i

by Simpson’s rule, taking n = 2.

10. Evaluate j; 8 logp cos = dx

by Simpson’s rule, taking n = 2.

11. Examine the integral f l% for continuity when o = 0.
Jo

a2 + x2
12. Examine the integral f 1-——9/.__2—.(.1_-17—-_5 in the neighborhood of o = 0.
0 Va*+zx

Find the derivatives, with respect to «, of the following integrals
without first integrating, and check by first integrating and then dif-
ferentiating :

aX /;
13. [ cos (x + adz. 15. JC Ve dy.

z., -1 ‘x_ « 2 2\
14. j;sm adx. 16. L (x? + a®)dx.

By differentiating with respect to ¢, find the values of the following
integrals :

" 12%—1
17. f; log (1 + « cos z)dx. 18. j; Tog dzx.
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19. By successive differentiations of f lx" dx = 1 obtain

0 n+1

1, _ m!
‘/; xz (l.g )™ dx = (‘— n= m'
20. From f" de = L (ax > 1)
oa—cosx g2 _1
find flo cosxd =1rlogb+ o
a — cos a+ Va2 -1

Test the convergence of the following integrals:

dx 4 d. ao—-’——,;
21'f1w:_c—\/;—ﬁ—; 3f e 25.[0e:xdx.

(x*+a
T g 24 -a%* 6og b d !
. L zz N . f(; [ COo8 0x dx.

26 f°°——-—-—dx ,
2/ 1.3 -1
27. By methods analogous to those used in Example 8, § 62, of the
text, prove the convergence of

@ | 2
f gin z? dzx.
0
28. Prove the convergence of
f-- e~% gin mx
0 x

dx.

Prove that the following integrals satisfy the conditions for differ-
entiability with respect to o under the integral sign:

0 -]
29. e~ dz, 81. e~ %" cos ax dx.
; It
0 2 oo xX
30. e~ %% dx. 32. .
j(; j(; 224+«

83. From j(; Yo~ dp == —1- obtain by differentiation

n!
an—rl'

f e dr =

84. From j; Yo dy == \/ obtain by differentiation

- Vrl-8.-.(27n—
/;xgﬂe_uzdx=_ll 3 2Zn—-1)

2 2rars

“

85. From f obtain by differentiation

z? +a 2\/—
© dx _151 -2n-1)
6 (2+a)™! 22-4---2na" 3
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36. From fo “e—“i cos mx dx = &—Q-E—E obtain by integration

—azx __ ,—Bz 2 2
e de=Lt10g 1™
0 T sec mx 2 a? + m?

- find by integration

87. From f “e~*% gin mx dc =
0 o+ m-

_1a

dx = tan — tan

X ¢SC mx

‘/‘we““’: — e_ﬁx » ﬁ
0

® 1 . . .
88. From j; . €% dr = - obtain by integration
o

—ax e~ bx

fwf—-—:——dx::log E
0 x a

. A
89. From jo\ e dx = —9——'”- obtain by integration

5=

Investigate the convergence‘of the following integrals:

e— ! __ e—b% %\

)d.r = (b~ a)\/;;.

49, fl(log x)" d. 42. x—:-r—g'L—; 4. [~ d* S
0 0 (1 —_ '.(74)’5 1 .E\/f(" 1
1log x w dr 11—k p2xa
41. 43. ———— . dzx.
hi=me 0 231 +2) o [ NToo

Evaluate the following integrals. The results of the chapter and
any elementary integrals may be used; and in any exercise the result
of a previous exercise may be used. In some casesa change of variable
is the only step necessary.

w0 8in mx T
46. dr=— if m >0,
S, 5
=0 if m=0,
™
=—— if < 0.
3 m

- 2
47. fo z log sin xdx:—%logz

a8. f‘e—“’f‘ dr = -l— V.

0. [ \/77
\/log =
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50. ]‘; wsin x cos mx

de=0 if m<—1o0o m>1,
x

if m=—1o m=1,

TR

f —1<m«<1.
S —2a /o
51_ fme z’dxz.e____\_[l.
0 2
HiNT. Representing the integral by u, first show that 3—3 =—-2u

fao e~ % sin bx

52. dx = tan™! 2

0 x

53, foocosx Z‘I;wii—n—_fdx=\[§~

f log (1 + k cos x)
cos ¥

de=msgin7k. 0<k<1)

55. f2log thsinz dr o gn-1k. (0< k<1)
1 —ksinxrsing

® — 2
56. fo xe~* cos B xdr = (:‘:?j_‘—‘ga)z

>]
7. fa\/a”~xzcos*’ Tde = a2 I—+—1- .
0 a 16 4

58.f" gin x dx _=2ife?< 1,
°V1-2acosz + o? 2'f )
=1 a > 1.

o

59. Show that for large values of x
© 1 ] — 1
f e~zd_x::g’x(: ___1_+ _2_:__ ceo (= 1)t Q_T}_).:.) Iy
3 z x x2 2P L
Show that the series diverges but that R, is less in absolute value than
the last term in parenthesis. This is an asymptotic series.
60. Show that

i - 22 . € ‘35 (2n-1)
[*eean=t <1__ _L+z__:z_...+(-.])nz__g__:._g_@__a> R

T 2 xz 22274 an x.!n

and show that this is an asymptotic series as in Ex, 59.



CHAPTER VII
THE GAMMA AND BETA FUNCTIONS

67. The Gamma function. By application of the tests of § 62
and § 64 it is easy to show that the integral

©
f " le=% dx
0

converges when » is positive and therefore defines a function of
n for positive n. This function is called the Gamma function,

and we have w
I'(n) =f " le=® dx. (n > 0) 1)
V]

We have, directly, I'(1) = f e ?dr=1. 2)
0

By integration by parts we have the identity

f °ox"e“ dr = [-— :c"e‘z] +n f 2" lerde=mn f " le~* dz,
0 0 0 0
and therefore T'(n+ 1) =nI'(n), 3)

which is the fundamental formula for the manipulation of Gamma
functions.

It is evident that if the value of I'(n) is known for n between
any two successive integers, say between m =1 and n = 2, the
value of I'(r) for any positive n» may be found by successive
applications of (3). Tables for log I'(n) for 1 < n < 2 have been
computed and may be found in various places.*

Moreover, formula (8) may be used to define I'(n) for values
of n for which the definition (1) fails. For if we write (38) in the

form
T'(n) = Ii(-’%‘iﬂ @)

then, if — 1 < n < 0, formula (4) gives us I'(n) since (n + 1) is
positive. We may then find I'(n) when —2 < n < — 1, since

* Consult, for example, B. O. Peirce’s “Short Table of Integrals.”
164
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now I'(n + 1), in the right hand of (4), is known:; and so on
indefinitely.

We have, then, in (1) and (3) the complete definition of T'(n) for
all values of n.

From (8) it follows that
I'(n)=m—1I'n-1); (5)
and hence, from (3) and (5),
T'n+1)=nn—-1)Tn-1),
or, more generally,
’ T+ =nm—1). - (n—kT(n—k), (6)

where k is a positive integer.
If n is a positive integer and we take k = n — 1 in (6), we have,

with the aid of (2), Tn+ 1) =n! 7
or I'(n) = (n—1)! (8)

Accordingly the Gamma function reduces to a factorial number
when 7 is a positive integer, and may therefore be considered as a
generalization of n! for the case in which = is fractional or negative.

From (3) we also obtain readily

T'n+k)y=Mm+k—-1)--- (n+4+ 1)nl'(n), ¢
or, what is the same thing,
T(n) = Ln + k) (10)

nn+1)-- (n+k—1)

where in hoth (9) and (10) k is a positive integer.

It appears from (10) that the Gamma function becomes infinite
when % is zero or a negative integer; for k can be taken large
enough in (10) to make n -+ k positive, and the fraction in (10)
then contains a zero factor in the denominator.

The integral (1) may be reduced to other forms, some of which
we give, together with the substitution which reduces (1) to each
of the new forms:

I'(n) = a"fo y"TlemWdy, (r=ay) (11)

I'(n) = 2f”1/2""‘e""' dy, (x=y" (12)
0
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v = o+ 17 [ v(log 2]y o=~ mtD1ogy) 13)
If we put » = § in (12) and use the result of Example 1, § 65,
we get @) = V. (14)
68. The Beta functicn. The integral
| [lx’”‘l(l — )" ldr

s

converges when m and % are positive (§ 64) and defines a function
of m and 7 called the Beta function. Hence

B(m, n) :j{: l:n""“(l — )" 1 da. (l)A

It is important to notice that m and n may be interchanged in
(1). To see this, place x =1 —y. We have

1
Bm, ) = [ (1~ )" dy
Y

1
:.—.f 1 — )™z~ dx = B(n, m). 2)
0
Other forms of the Beta function are of importance. In (1) place
x = y; then
a 1 a
B(m, n) = i, y" " Ha—y)" ! dy. 3)

In (1) place z = sin? ¢. We get
B(m, n) = 2 j “sin?m =1 ¢ cos?" 1 ¢ dg. )
0

Y
Again, place x = —=—in (1). We get.
gain, p T4y 1). g

© m—1
B(m, n) = f ¥ iy.
(m n) 0 (1+y)m+n dy (5)

A relation between the Beta and Gamina functions may be
worked out as follows: Using (12), § 67, we have

P(m)r(n\ —4[ 2n-1, -z° dax /myzm 1=yt dy
[

;:i'/ / ..n—) 7ﬂv'—{r—|,)dxdy
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The double integration is to be taken over the first quadrant of

..
the XOY plane. Replacing Cartesian codrdinates by polar coordi-
nates, we have

T'm)I'(n) =

ST}

0

j 7‘2(’”+ﬂ—1)e—'i" sin2m-—1 @ cos2n-1 Gr dd dr -
0 0
™

= 4f§ sin?"1 @ cos?™ 1 @ dﬂj pmtm—lg—rt g,
0 0
= B(m, n)I'(m 4 n),
by (4) of this section and (12), § 67. Hence

. _I’(m)I‘(n) .
B(m, n) = I‘(m + n) ®

o

As an example, consider f
P \/1 —x*
Placing o = y, this becomes

1
f 4y (l—y)tdy = 4BA, )
0

_ATWOIG),
T

but T@) =3, T@=Vm T =% 3% % 3Vm

‘ 1 de 128

Therefore ‘fo \/1 ;Z— T

69. Dirichlet’s integrals. As an interesting example of Gamma
functions let us endeavor to evaluate the integral

I =‘/.j[fxl-—lym>—lzn-—~l dx dy dz

over the octant bounded by the ellipsoid
2 2
pr + +
and the codrdinate planes.
We begin by placing
2

x y? 22
“"‘g bz“"nr "§=§
lbm

Then /fﬁ’ 172 §'2 dEd‘r)dg'

over the octant bounded by the codrdinate planes, and

E+n+{=1
¢



168 THE GAMMA AND BETA FUNCTIONS

Putting in limits, we ha.ve

lbm 1-¢ ISntl 1

% dgan

ZGlb’" “5‘ n
—— f e gl dedn,

Carrying out the integration in which ¢ is constant, we have, by
(3),§68, 1

= 2” — & 2 —_ - .

1=t (Mg - " B(3 2+1)d5,

and carrying out the second integration, we have, by (1) and

(6)’§68 ‘b"‘" <z m+n ) <mn )
= =41
5
lbm

e Or Gt )

4n <+7;+n+1)11(m+n+1)

2

r
eGP )T G) o
r (l + 1;; +n

+1)
Ifl=1, m=1, n=1, we have for the volume of an octant of
anellipsold —_ abe TYTHTR) _ abe

-, e e —

Hl=8 m=1 n=1, we have

a*bePHTHIG) _ a’be
fffzd"d dz =3 rd) 80 "

3
Similarly, f f f y dx dy dz = —3b—0-— T

and therefore the moment of inertia of an ellipsoid of mass M
about OZ is abe .

P30
Again, if l = 2, m = 2, n = 1, we have the product of inertia

_ _a?eT(MHIHTE) b
I,,-fffxydzdydz— 2 TG =15

(a2 +b2)7 =} M(a? +b?).
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A more general formula than 1) is
Wn%%w@%ﬂ
ff :El x,ym—lzn-l dz d dz.=
( +o Tt 1>
over the octant bounded by a portion of the surface

G+ () 0=

and the three codrdinate planes. The proof of this we leave to
the student.

This discussion may be extended to any number of variables.

70. Special relations. We shall cbtain in this section certain
relations involving Gamma functions which are less fundamental
than those of § 67.

In (5) and (6), § 68, place m = 1 — n, assuming that 0 < n < 1.
There results @ ym—1

)

I'R)T1—-n)= dy. 1
)’ —mn) 1Y (1)
We shall show in § 149 that
uoyn—l _ P e _
A 1+ydy_~sinn1r OB<n<l (2)

Assuming this for the present, we have
'mI'd —n)=

— 3)
sin nr

We note in passing that by placing n =4 we have again the
result found in § 67, Q) = @)
1 2 3 p—1

in (3) let us place in succession n = 5, -1—), 7—), -+ ., — where

pis any positive integer, and multiply the results together. We have
—_ 2 »—-1

O R e e e

P P p sinIsin-—j-usinL

y 4 4 P

We shall show in § 136 that the denominator on the right is

p_ Hence we have

2r-1 p1
GG (- o

equal to
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To obtain the next relation which we desire we begin with the
elementary integral - 1
[Cemaanl;

whence fdbf —b do —f — = log z.

The double integral satisfies the requirements of § 66 for inter-
change of the order of integration.

Hence logx=fwdafxe“’“ db =[ £—:-f—dat. (6)
0 1 Jo a

The integral (1), § 67, defining I'(n) may be differentiated under
the integral sign with respect to ». Representing the result by

I'(n), we have
T'(n) = ( "~le=%log x dx;

0

und substituting the value of log x from (6), we have

I'(n) =~fm:c""le"5 dxf“g—‘——_a—e-:da.
0 0

The order of integration may be interchanged by § 66. Hence

T(n) -_—f dﬁf (e — e **)x" e~ dx
0o aJo
=fwe*"d—°‘ e~ de —fwda ol et le g,
0 a

The first integrals in each pair may be evaluated by (1), § 67,
and (11), § 67, respectively. We have

By placing # = 1 in (7), we have

I’(1) =f0°°<e—“ —

» as given in (7), we have

)

[0

I'(n)

F'(’ﬂ) T 1 da
T(n) ()+f [1+a <1+a>] @)
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If n is an integer greater than unity, this may be reduced
further by placing 1 4+ o =t¢. The integral in (8) becomes

fw[g~-2+r3+---+t“’"]dt=1+%+§'+~"+ :
1 .

n—l'

The constant I'/(1) is called Euler’s constant. 1t is represented
by — 7, and it has been computed that

v = 5772157 - - -
We have, finally, from (8), for integral values of n,
I'(n) 1
i L2 1 — (
T Y+ 1“ + —t- -t w -1 (9)
- EXERCISES
1. Prove that
J2k+1\ 1:83-5---2k—1) -
p(hh)LBsekon g
where k is a positive integer.
2. Prove that ],<p + 1)1‘( + 1)
. m

j(;l:v”(l — ™) dr = - T -
mI‘(LL +q+ 1)
m

3. Prove that [ '—mt L [ (1”2
. Prove —_ = =
0V1 Izt 4Vl M
1 x%dx 1 3
4. Prove that = __[ —)J
f‘; Vi-—zxt Ve r 4

fx #*dx __\/7?P< 21>’

5. Prove that

n 1.8.5...(m—1
and then show that f 128 ( );'_:

0 Vi 2.4.6---n 2

if n is an even integer, and

fx z*der _2-4.6---(n—1)
0\/1___x2 1-3

if n i3 an odd integer.
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§.

]
PR
i
~—

6. Show that f F -71—- ———T.
N
n

p+1

7. From Ex. 2 show that if o is a positive integer k,
1 1 k- 1)!
2P(1l — x™)dx = —
j; ( ) m(g+1)(g+2)---(g+k)
p+1,

8. From Ex. 2 show that if ¢ + —— is a positive integer k,

flx"(l z,,.),dx_q(l—q; k-1-q) _
0 m - k'sin gm

9. Prove that

f%inﬂxdx:ficosﬂxdx-_-lla(”’f 1 1).
0 o 2 \"z2 '3z

Hence prove that

mw mw
fzsin”xdx=f2cos"xdx=
0 0

2-4.6--. (n—1)
1.

if n is an odd integer, and

fisin":cd:c =f§c4.7s":1cd:z:=1 3
0 0

3

if » is an even integer.
10. Prove that 2n_1[ <

™
fzsin" 2xdr =
0

il

11. From Ex. 10 prove that 2,,_,[ n + 1)]
fisin":z: dr =
°

'n+1)

Fn+1)
12. By combining Exs. 9 and 11 prove that

2'--II‘< +1> <> Vr ().

2
18. Prove that

n—1
f;wcos b:cd _b T

-~ x_l"(n)z B<n<l

by placing xln T o f o —le== day,

reversing the order of integration, and making use of (2), § 70.
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14. By a method similar to that of Ex. 13 prove that

fwsin b:cdxzb"“ b . (0 <n<1)
oz T'n) _ . nr
2 sin —

15. Find the area of one loop of the curve in polar codrdinates
r* = sin® @ cos 0.
16. Prove formula (2), § 69.
Usc the Dirichlet integrals to obtain the volume, the center of

gravity, and the moment of inertia of an octant of each of the solids
bounded by the following surfaces:

ettt =a. st trt=dd st s=1
20. From (5), § 68, prove that
1, m—1 Aen—1
T I e = B(m, n).
o (1 4+ )"t
21. Prove that

B(n, n) = 2'"*"B(n, %).
22. Prove that

VaT(n)=2n"" r(%’)xj(”‘z”).

28. From (7), § 70, prove that

- [ — 1)ee 4 AF A=A+ ) da
logI‘(n)_.f(; [(n De= + Tog (LT o) ]a

24. From Ex. 23 prove that

“fe=r  (1+a)?
i\ [ « " logd +a>] da=0.

25. From Exs. 28 and 24 prove that
*ln—1 (A4 '-0+4+a™ do
lvg I'(n ::f [ — N .
vg L) o L1+ a)? a log (1 +
28. From Ex. 25 prove that

log I'(n) —f [-a—":——e«a - (n— 1)6‘:'11&




CHAFPTER VI1II
LINE, SURFACE, AND SPACE INTEGRALS

71. Line integrals. Consider a function P(z, %) defined and con-
tinuous for a certain region of the plane XO0Y, and take in the
region a curve C (Fig. 61) ex-
tending from a point A(ay, b))
10 a point B(az, b2). Divide the
T e . . G — -
curve Cinto nsegments by points M,
M(xy, Y1), Moz, y2), -, let Ms/i
(&, \ bf . It 1 th - 517//
{¢;, 1) be a point in the seg MM}-"
ment (M., M;), and form the M;’”Q;Sf(';

SN

- M,
2 PEL ) (0 — i), F,_--.//

f=] :

The limit of this sum as n is l:? X

irdlefinitely increased and each

fuctor a; — ;-1 approaches zero

is the line integral of P(z, y) along the curve C and is indicated

by the svmbol (g, bs)
J.

F1G. 61

P(z, y)dz V)
ay, by)

zlong €. The value of this integral depends not only on the

Jiuits but also on the curve C. If the equation of the curve is

known in the form y = o), (2)
the integra! (1) may be reduced by substitution to an integral
in one variable, ay

Plz, ¢(x))dx; 3)

Ja,
or if the equaticns of the curve are given in terms of a parameter ¢
a5 x=fi(t), y=rf), 4)
‘ne jntegral (1) becomes by substitution
4
[ rwa. &)
Sty

Fither (3) or (5) may be evaluated by direct substitution.
174
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Some very elementary integrals connected with a curve may
be looked at from this point of view. For example, P(z, ¥) may
be simply y. Then (1) is the area ADEB, of which C is the upper
boundary; and if P(x, y) is wy?, then (1) is the volume of a solid
found by revolving ADEB around OX.

If Q(z, ¥) is another continuous function, we may form the sum

21 Q& m) (i — yi-1);
and the limit of this sum is another line integral,

(as, bg)
f( "o v, ®)

@y, by
taken along C. Thus, if Q(x, ¥) is 2, the integral (6) is the area
FABG, of which C is part of the boundary; and if @ is wz? the
integral (6) is the volume of a solid formed by revolving FABG
around OY.
In practice it is more common to find line integrals occurring

in the form (@2, 59
L 1P e + @G v, )

as, by)
which means the sum of (1) and (6). It is this form which we
shall generally have in mind when we speak of a line integral.
The evaluation of (7) when the equation of C is given in the
form (2) or (4) is made by substitution and direct integration.
It is not necessary that the curve C should have the same equa-
tion for its entire path, but it may be of the form noticed in § 1.
For example, consider the integral

a,1)
f( [y — z)dy + y dx].

0, 0)

The curve C may be the parabola y* = . Then the integral is
1
£ ¥+ y*)dy = §.

Or the curve C may consist of a piece of the axis of x from
(0, 0) to (1, 0) and then the line == 1 from (1, 0) te (1, 1). The

integral is then 1 .
fo (y — Ddy =—1,

sihce on the first part of the path y = 0, dy = 0, and on the second
vortion x =1, dx = 0.
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We are, however, interested in properties of (7) which may be
discussed without direct integration. By the definition, (7) hasa
distinet meaning as a limit of a sum whether C be an open or a
closed curve. In the latter case we write (7) as

fowdxwdw.

As an example of (7) consider a field of force; that is, let
there be a force F determined in direction and magnitude at
every point of the region of the plane
considered.

We wish to find the work done on
a particle moving from A to B along a
curve C (Fig. 62). Let C be divided into
segments each of which is As and one
of which is MN. Let F be the force at
M, MR the direction in which it aects,
MT the tangent at M, and @ the angle
RMT. Then the component of force in
the direction MN is Fcos 6, and the
work done on a particle moving from M to N is F cos 6 ds except
for infinitesimals of higher order. The total work W in moving
the particle from A to B is then

W=chosGds (8)

taken along C. This is properly called a line integral, but it is
not in the form (7). It may, however, be put in that form. For
if o is the angle between MR and OX, and ¢ the angle between
MT and OX, then b=a—0;

A FiG. 62

whence W= f (F cos a cos ¢ + F sin a sin ¢)ds.

But Fecosa= X, Fsina =Y, where X and Y are the com:
ponents of force parallel to OX and OY, respectively, and
cos ¢ ds = dz, sin ¢ ds = dy.

Therefore W= f (X dz+ Y dy), )

which is the form (7).

As another iHustration, suppose a fluid flowing over the plane
XO0Y, the lines of flow being all parallel to XO0Y. We wish to
find the amount of fluid per unit of time which flows across a
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curve C (Fig. 63). Let q be the velocity of the fluid, o the angle
which the direction of its motion at each point makes with 0X,
u = q cos « the component of velocity
parallel to OX, and » = ¢ sin « the com-
ponent of velocity parallel to OY. Take
an element of the curve MN = ds and
neglect all infinitesimals of higher order
than ds. In the time dt the element
has been transferred to M’N’, where
MM’=NN’'=gq di. The amount of fluid
crossing MN is therefore the amount in
a cylinder of base MM’'N’N. The vol-
ume of this cylinder is hAMM'MN sin 6
= hq dt sin @ ds, where h is the depth of the liquid, and 6 the
angle between MM’ and MN. The amount of fluid crossing MN
is therefore hpq dt sin 0 ds, wheré p is the density. Hence the total

amount crossing MN is .
h dtqu sin 6 ds.

To put the integral in the form (7), note that if ¢ is the angle made
by MN with 0X, 6 = ¢ — a. Therefore the amount flowing across

C it of time 1
per unit of time is h f (— op dz + up di). (10)

F1G. 63

where the integral is of the form (7).

72. Plane area as a line integral. In using line integrals around
closed curves we need some method of distinguishing between the
two directions in which the curve may be
traversed. Accordingly, when the curve is ‘//
part of the boundary of a specified region, :
we shall say that the positive direction is
that in which a person walking around /
the curve has the region on his left hand.

Thus, if a circle is the boundary of the

_region included within it, the positive direc-

‘tion is counterclockwise; but if the same

circle is part of the boundary of region

exterior to it, as in Fig. 64, the positive FIG. 64
direction is now clockwise.

With this fixed, let us now consider the integral

Juaa, M
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taken in positive direction along a closed curve C which bounds
a region of area A (Fig. 65). For simplicity we shall assume
first that C is such that a line parallel to OY or OX meets it in
two points or not at all, with the
exception of four tangents which
are parallel to OX or OY at points D 174
L, K, M, and N. Here L is the \
extreme left-hand point of the V4 K
curve, K the extreme right-hand
point, M the highest point, and N ¢
the lowest point. We draw the L Y
tangents LF, KB, MD, and NE. 5 K
The integral (1), taken along C N
from L through N to K, gives the
area FLNKB. The integral (1), 5 7 B X
taken along C from K through M Fic. 65

to L, gives in magnitude the area

FLMEKB, but with a negative sign, since dz is always negative.
Hence (1) taken in the positive direction around C gives the
algebraic sum of these areas; namely, the area bounded by C
with a negative sign. That is,

A=——foydx. @)

Consider in a similar manner the integral

f x dy. ®)
/O

The integral (3), taken along C from N through K to M, gives
the area ENKMD. The integral (3), taken along C from M
through L to N, gives the area ENLMD with a negative sign.

Hence
A= f z dy. @)
o]
By adding (2) and (4) we have
a=3[@dy—yan), ®)
o

which expresses the area in terms of a line integral taken around
the boundary of the area.

Formula (5) has been proved for an area of simple type. It is
readily shown to be true for any area which can be cut up into
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areas of this type. For example, consider the area bounded by
the curve C (Fig. 66). By drawing the lines MN and LX the
area is divided into three areas A;, A2, Aj;, to each of whick
formula (5) applies. By adding these results we have the area A.
But examination of the arrows
shows that the curves MN and
LK have each been traversed

FIG. 66 Fic. 67

twice, in opposite directions. The integrals along these line:
therefore cancel, leaving only the integral (5)-around C, traversed
continuously in the positive direction.

The theorem is also true for an area bounded by more than
one curve. For example, consider Fig. 67. By drawing LK and
MN the area is turned into cne bounded by a single curve, and
formula (5) is applied. The two inte-
grations along LK and MN, however,
cancel, leaving the integrals around the
boundary curves each traversed in a
positive direction.

We have also in the proof assumed
that C did not cut 0X or 0Y. The
student may easily show that this is ©
immaterial.

As an example Jet us first consider the area bounded by an
ellipse and the chord connecting the ends of the major and minor
axes (Fig. 68).

The equztion of the ellipse is

Fic: 68

Z=0c08¢ Y==bsindag,

30 that on the ellipse 1« dy -- y dz = ab do.
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The equation of the chord is

b
y""—;x'*'b)
so that on the chord, zdy —ydr = —bdz.
Hence
f(xdy z/dx)——f abdo + 5 f( bd)—ﬂll__i'z,
B
5
5 / \
P
B0
0 X 5 B“z’ X
Fia. 69 FIG. 70

Again, consider the area of the triangle OP; P, (Fig. 69).
The equation of OP; is ¢ = % x; so that along OP;, xdy—ydx=0.
1 .
Similarly, along OP2, x dy — y dx = 0. The equation of P, P; is

V2= (o — ay),
X — X1

Yy—h=

so that along P, P,
rdy —yde=— [yl =) jyl)]d:z:.

X2 — X1
Hence
A‘—‘f(xdy ydx}~_1f=[y1___xl(?lz"?/l)]dx’:xlyz—xzyl.
2 2 z, L X2 — X1 2

Finally, consider the area of the figure OP,P; (Fig. 70) when
the curve PP is given in polar cosrdinates. Along this curve
x=7rcosf, dxr=cosfdr—rsindds,
y=rsinf, dy=sin@dr+rcosfdf;
whence xdy —yde=r2db.
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Along the lines OP; and OP: we have, as shown in the previous
example, x dy — y dx = 0. Therefore

o
=%L(xdy—ydx)=%ﬁ r? dé,

the familiar formula of polar codrdinates.

72. Green’s theorem in the plane. Consider a region R bounded
by a curve C (Fig. 71). We shall assume for convenience that any
line drawn through R meets C'in two y
and only two points. If the line is
parallel to OY, one of these, for which Y,
¥ = 791, is on the lower boundary of R,
and the other, for which y = y2, is on ‘ ¢
the upper boundary. Let a and b be
the extreme values of x for points in R.

Let P(x, y) be any function which O «a
is continuous in R and on C and for 6. 71

Y

i
]
]

b

[} A —

which —g—s— is continuous. We shall consider the double integral of

op over the area RB. Then, by (2), § 66,

oy "
f——dxdy—fdxf g—gdy

(R)
[P(x’ y2) P(xr yl)]dx

= — f P(x, y1)dx — f "P(z, y2) da. @
a b .

But by the definition of a line integral the expression on the
right in (1) is, except for sign, the line integral of P dx around C
in the positive direction.

Hence we have j f oF de dy = — f P dzx, 4 ()]
(©)

(R)
where the indices R and C are used to denote the region and
the curve over which the integrals are to be taken, and where
the direction along C is to be positive.
Similarly, if @ is another function of x and y continuous in R

and on C, and such that ?9- is eontinuous in R, we may show that

ffanxdy-—dey. @3)
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By continuation of (2) and (3) we have, finally,

ff@g“%)dxdy—"fu’dwwdy). 4)

(B («©)

We have proved this result for a simple region R. It is easily
extended, as in § 72, to regions of more complicated form. This
is the first form of Green’s theorem.
Modifications of (4) follow.

Let a be the angle made with 0X
by the positive direction of C, and 5 ¢
the angle made with OX by the normal
drawn outward.

Then, as shown in Fig. 72, for any
point of the curve . Fi6. 72

a'_""*"ﬂ!
dz

and = ¢0s a = — sin 3,

-ﬁzsina:cosﬂ.

If F is a function of x and y, its derivative in the direction along
the cutward normal.to C is, by § 35,

AF_OF o OF . . OFdy_0Fds
dn = oz &% A+ oy sin 3 = oxr ds Oy ds ®)
oF oF

In (4) we may put P——;y— Q:%,

2 2
cndhaveff<aa§+—a—£ dz dy f<~—dy———-d> (6,

(R) ©
2 2
whence, by (5), —_— d —ff(da €+ ? F>d dy. @)
Again, if we place in (4)

, dF 9G 0F  0G oF]
we get (!G ds = ff[ax 8): oy ayld x dy

A
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The equations have special interest when F is a function which
satisfies Laplace’s equation

0%F sz
P + =3 o0 = 0.
In that case (7) becomes f . ds = 0. (9

©

This discussion will be continued in connection with the treat-
ment of Laplace’s equation.

74. Dependence upon the path of integration. Consider a region
R which shall have the property that any curve in it connecting
two points may be gradually deformed intc any other curve
connecting the same two points without passing out of the region.
Such a region is called simply con-
nected. A region shown in Fig. 67 is
evidently not simply connected until
the cuts NM and LXK are made, when
it becomes simply connected.

We are to inquire under what con-
dition a line integral connecting any
two points A and B of such a region
depends only on these two points and
not on the curve which conneets them.
It is evident in the first place that if
the line integral along the curve C; from A to B (Fig. 73) s
equal to that along C: from 4 to B, then the integral along the
closed curve which we may form by going from A to B along C;
and from B to A along C3is zero. Hence, sinee the points 4 and
B may be any two points and the curves C: and C: any fwu
curves, the statement that the line integral between two points
is independent of the path is equivalent to the statement that
the line integral around any closed curve is zero.

It is evident that in a simply connected regico any closed curvea
bounds a region to which the results of § 73 may he applied

A

Fia. 78

. ., 0P 0 ) . .
That is, if — and ?g are single-valued and continuocus in E, then

oy

for any closed path C inclosing a region T,

f(Pd7'4 Qdy)*—/f(%g-—ggvfirdg o

()
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2
It is first evident that if op _ 9
oy o
the integral on the left of (1) is zero. This is then a sufficient

condition that a line integral around any closed path in R is zero.

= 0 at all points of R, then

e oP ¢
The condition is also necessary, for suppose _d_;; — ?g were not

zero at some point. Then it would be possible to take T so that
P

?)—— - -;Q would ve of the same sign at all points in T, since the
oy x :

functions concerned are by hypothesis continuous. Hence the

integral on the left of (1) could not be zero. Therefore we have

the following theorem :

In a stmply connected region in which P, @, and their first partial
derivatives are continuous, the necessary and sufficient condition that
the integral

[raztaa
around a closed path should bhe zero and that the iniegral along a
path connecting two pornts should be independent of the path is

oP EQ

oy or
As an example, consider

f[x2+y ot x? 4+ y? J

Here EPi etk and the condition is met. But

P and @ and their derivatives are discontinuous at the origin,
and hence the theorem may be applied only to simply connected
regions which do not contain the origin. In other words, the
integrals along any twe paths which do not inclose the origin is
the same, but the integral around two paths which dc inclose the
origin ie not necessarily the same. This may be verified directly.

For if we use polar cobrdinates the integral becomes f d@, and 6

returns to its original value after traversing a path which does
not surround the origin but is increased by a multiple of 2 # for
any path surrounding the origin.



EXACT DIFFERENTIALS 185

75. Exact differentials. We have already seen, in § 36, that

oP  0Q
‘ oy ox @
is the necessary and sufficient condition that
Pdx+Qdy

is the exact differential of some function ¢. By the use of the
line integral we may establish this result independently of § 36.
In the first place, the condition (1) is necessary, since if the func-
tion exists such that g4 — par £ Qdy, @)
op_ 79 _ 0

o s St e

then

We shall proceed to show that, conversely, if (1) is satisfied
for any two functions P and @, there exists a function ¢ for which

9 _ 9% _
ax""'P’ ay— »
and therefore Pdx 4+ Q dy = ddo.

Consider for that purpose the integral
=, v)
f (Pdx 4 Qdy), (8)

(g, ¥o)

where (o, ¥o) is a fixed point My Y Moy) Qlarhy
and (x, %) is a variable point M. - : "
Inder the assumption that (1) is
fulfilled, (3} is independent of the
path, and its value is therefore
determined when (a_c,. y) is given. Mz,

Hence, by the definition of a fune- x
tion, we are justified in writing 0 Fic. 74

(x, ¥)
f (P dx + @ dy) = $(z, 9). @)

(To» Yo)

o

(+h, ¥)

Then [T e de @) = d@+ by ). 5)
(2o, ¥o)

Since this integral is independent of the path, we may take the

path as made up of a curve drawn to M and a line MQ parallel

to OX from M to Q (Fig.74). Then '
(+h,y)

S+ by y) = S, ¥) + f( (Pdz+Qdy). (6

, V)
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In ‘the last integral of (6) y is constant. Hence dy =0 and

(6) becomes @+k v)
6@ +hy ¥) — bz, ¥) = f( P(z, y)dz

¥)
=hP(E, y), ®<E<z+h)
the last transformation being made by § 56.

o(e+h, y) — ¢x, y)

Then Lim = Lim P(§, 9);
B0 h P -
whence %‘f = P(x, ¥).

Similarly, we may prove that
¢
%-Q@y%

We have therefore proved the theorem. Y
The discussion aiso suggests a method M(z,y)
for determining ¢. Since ¢ as defined
by (4) is independent of the path, we
may take the path as composed of MR
(Fig. 75), parallel to OX, along which Mo%o¥s) R(%,y,)

Pdzr + Q dy = P(x, yo)dx, and the line i %
R M, along which P de+Q dy=Q(x, y)dy ©
with = constant. We have, therefore, Fie. 75
T v
6@, v = [ P, wde + [ Qe vy, 0
Lo Yo .

where in the last integral z is constant.
Similarly, by first integrating parallel to OY and then parallel
to 0X, we have

r Yy
¢mm=fpmwwﬁ£mmwm (8

where in the first integration y is constant.

The point (o, y) may be chosen in a manner to make the
integration as simple as possible, since a change in (xo, o) simply
changes the constant of ‘integration. Of course a point (o, %o)
must be avoided which would make P or Q infinite or discontinu--
ous along the path of integration.

As an example, consider

(4 2%+ 10 2y® — 8 y")dr + (15 2%y° — 12 2y® + 5 y*)dy.
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Here %5 = %i—? = 30 zy® — 12 y3. We may take (xo, 7o) as (0, 0),

and, using (7),
b, ) = 4x3 dr +f (15 2%% — 12 29 + 5 y*)dy

=z* +5xy ~3xy* +¢°.
Again, consider

1 Y )

= }d
<x x Vy? — 22 x+\/y2_x2
"Here == e

We cannot take x, as zero, since P is then infinite. We may,
however, take (xo, %) as (1, 0), and, using (7),

’ r & 0o Vyz—2x2
=log z + log (¥ + Vy2 — 22) — log x V= 1
=log (y + Vy2 —z2) —log V—1.

Hex:e log V— 1 is a constant (§ 140) which may be dropped in
writing ¢(x, ). As a check take (%o, yo) as (1, 1) Then

s =[ G- >d’”+f =

= log 4 log ———————— 1+ +log(y+ Vy? —a2)
— log (1+\/ — x2)
=log (y + V2 —22).

76. Area of a curved surface. We have seen in § 53 that if a
surface is defined by the equations

z = f1(%, v),
y=f(u, v), 1)
2= fs(% 0),

the element of area may be taken as

= VEG = F2 du dy. @

In fact, we define the area of any portion of the surface (1) as

the integral
S=ff\/E‘G—F2dudv, 3;
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the integration to be extended over the portion of the surface
considered.

We have laid down somewhat arbitrarily the definition of a
curved area. Its validity will depend upon the fact that the
number obtained for S is independent of the coérdinate system
used. This may be shown to be true, but we shall omit the proof.
It may be shown without difficulty by the student that our defi-
nition gives the usual result for elementary surfaces the areas of
which have been found by other methods. For example, the
.equations x = acos 0 sin ¢,
¥ = a sin 0 sin ¢,
z2=a cos ¢,
define a sphere of radius a. The entire surface of the sphere is
obtained by allowing ¢ to vary from 0 to m, and 6 to vary from
0 to2m. Hence, if § =« and ¢ =,

E=a*sin?¢, F=0, G = a?,
2w
and S = f f a’sin ¢ dO d¢ = 4 7a®.

A particular case of equations (1) is
T = u,
y=1v 4
z = f(u, v) = f(z, y).
In this case the codrdinate curves on the surface are the curves
cut out by planes parallel to 0OZ and making elements of area
0z 0z

dx dy on the XOY plane. If we place, as usual, p = P P

wehave  po14p?, F=p;, G=1+¢%;
whence dS = V14 p2 4 q2 dx dy. (5)

From § 47, if «, B, v are the angles made with the axes of
2, 9, 2 by the normal to the surface at the point (z, y, 2), we have

1
cos ¥ = —————y
- PV VI et
and (5) becomes dS = sec v dx dy,
or dx dy = cos v dS. (6)

From this it appears that dS is rigorously the portion of the
tangent plane which projects upon the rectangle dx dy, so that
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the area of Lhe surface is considered as the limit of the sum of the
areas ol such portions of tangenl planes.
Similarly, in the case

T = U,
Y= f(lu” ") = f(xr Z),
z2=1,
we have \/ (Y 4 > dz der;
E)z /
whence dz dr = cos B dS, (7

where dS projects upon the plane X0OZ into the rectangle dz dxr.

Again, if x = flu, v) = fly, 2),
Y =u,
2=,
ox ox
dS—-\/ +(5 ) +( )~> dy dz ;
whence dy dz = cos « dS. < (8)

In the use of formulas (6), (7), and (8) it is convenient to
consider dS as always positive. 'Then the projections dx dy.
dy dz, or dz dxz will be positive or negative according to the sign
of the cosine factor.

Consider, for example, the sphere

22 4 9% 4 2% = a’.

If the normal is always drawn outward from a point on the
sphere, and «y is the angle between this normal and ihe positive
direction of 0Z, then in the use of (6) the projection of the upper
hemisphere is positive and of the lower hemisphere is negatiive.

Consequently, for the upper portion of the sphere we have, by the
use of (5),

dS =~z dy. )
Va2 — g2 — y‘z

If we wish the area cut out of the upper part of the sphere by
the cylinder 2?4 y? —ax =0,
we have to compute the integral }
Vaz—a? a
. e e ()
s= [ amvammmge

__y2
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This is best done by using polar codrdinates in the plane. Then

@ cus 6
= sz ardOdr - *(x—2).

77. Surface integrals. Let F be a function which is deﬁned for
each point of a surface S; then

f Fds 1)

is a surface integral, the summation taking place over the surface.
Here F may be given as a function of (u, v), the curvilinear
coordinates on S. Then (1) may be written

f f F(u, v) VEG — F2 du do. @)

-

Or F may be given in terms of (x, y, 2), and its value on the
surface then determined by the equation of the surface. This
gives various forms of the surface integral. For example, we may

have
f f F(z, y, 2) sec vy dx dy, 3)

where z and sec 7y are to be computed from the equation of the
surface S. In (8) we may place

F(x, y, z) secy=R(x, y, ?)
and have the form f f R(x, y, 2)dx dy. “4)

In (8) or (4) dx dy is to be taken positive or negative according
to the law of projection given in § 76; that is, according as cos y

in (3) is positive or negative. .
Again, we have as surface integrals on S
f P(x, y, 2)dy dz, ®)
f Q(x, ¥, 2)dz dz, (6)

where dy dz = cos @ dS, dz dx = cos BdS, and the signs of the
differentials are to be determined as in § 76.
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~ In applications surface integrals frequently appear as the sum
of the three integrals (4), (5), and (6); namely,

f (P dy dz + Q dzdx + R dx dy), )
which is the same as
ff(P cos a+ Q cos B+ R cos ;y)dS. ®

As an example, suppose fluid flowing through the surface S with
a velocity ». Let PQRS be an element of the surface dS and let
the lines of flow be as indicated in Fig. 76. In the time d¢ the
particle of fluid at P will flow to 7,
where PT = v dt.” Hence the vol-
ume of fluid flowing in the time d¢
across dS is equal to the volume of
the figure PQRS-TUVW. Consid-
ered as an infinitesimal prism this

volume is v dt dS cos &,

where ¢ is the angle between PT and the normal PN to the sur-
face. The amount of fluid in this volume is

pv dt dS cos ¢,

where p is the density. The amount flowing across the entire
surface in the time dt is therefore given by the surface integral

dtfpv cos ¢ dS, 9)

where v and cos ¢ are functions defined for each point on S.
The integral (7) may be transformed as follows: By the law
of composition of velocities

¥ COS ¢ = ¥, = ¥, cos a + v, cos B 4 v, cos v,

where v, is the component of veloecity normal to S; v,, v, v, are
the components of velocity parallel to OX, OY, OZ; and cos a,
cos B, cos vy are the direction cosines of the normal to S. Hence
the surface integral in (9) may be written

dtfp(vz cos a + v, cos B+ v, cos y)dS, 10)

Fic. 76

or dtf (pv dy dz + pv, dz dx + pv, dx dy), 11)

where the signs of the differentials in (9) must be taken as in § 76,
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78. Green’s theorem in space. Let R be a function of z, y, and 2z

and consider the integral ~~~5p
jj/ T dx dy dz 1)

</

taken through a volume 7 in which R and QE are continuous.

0z
Tiet us first suppose the regicu 7 bounded hy a surface S which
projects upon the ¥OY plane into a region S’ such that a straight
line drawn parallel to OZ from any point in S’ meets S in two
and only two points (Fig. 77). Letz; and 2; (21 < 22) be the values
of z at these points. Then the integral (1) may be written

R 4
[fazay [ "5 dz = [ 1R, v, ) ~ By, w0l dy. @
' )

(s
Let the normal to the surface be drawn outward at each point,
let a, B, v be the usual angles, and let vy = v; when z=12; and
7 =42 when z=2z>. Then it is z
evident that v, is obtuse and
that «2 is acute. In (2), how-
ever, dx dy is positive from the
nature of the triple integral
involved. Hence we have, if
dS is the positive element of
area on the surface,

dx dy = — cos v1 dS o Y
when z = 2, /
dx dy = cos y2 dS X S )
when z = zg, (=4)
2ad then (2) may be written FiG. 77
ff[R(x, Y, 22) + R(®, y, 21)] cos v dS.
e
(€5)

But this is simply the surface integral of R cos v over the sur-
face, and hence we have

fff%?dxdydz:f/lccos'yds. (3)
)

()
Finally, in (8) place cos 7 dS = dx dy, and we have

M%’;dxdydzszk’dxdy. 4)
(T -

(S)
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In (4) 4 dy is to be given a sign v accordance with the eonven-
tion of § 74. This makes an essentiai difference between the right-
hand side of equation (4) and the right-hand side of equation (2).

We have assumed ior convenienvce a simple form of the volume
T. Tt is easy to extend the result v volumes which may be split
up into volumes of this type. Tiis we leave to the student.

In the same manner we have

jj,r'_‘)_‘gd dy dz =fo cos B dS = f Q dz dz, (5
fj[f)—[jdxdydz-—ﬂ['msadoﬁfjpdydz (6

or) S)
By adding (4), (5), and (6) we obtam the resuit which is most often

I e

__ff(Pcosa + Q cos B -+ R cos v)dS

(8)

=ff(p dy dz + @ dz dz + R dx dy). (7

(S)

Tlns is one of the relations which are known as Green’s theorem.
As an illustration of the meaning of (7) let us consider the integra;

ff((xa — yz)dy dz — 2 x%y dz dx -+ z dx dy] (8)

taken over a cube of side equal to ¢, three of whose edges lie along
the coordinate axes. Applying (7), this is equal to

a « a 5
[ [ [ee-2ettarayse=bta. @
0 Jo Jo 3

On the other hand, proceeding directly and considering

f (x* — y2)dy dz,

()
we have dy dz positive on the face x = a, negative on the face
z = 0, and zero on all other faces. Hence the integral is

ff(a —yz)dydz-{—/ J yzdydzﬁa (10)

In the integral f f (— 2 x%y)dz dx
®)
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dz dx is positive on the face y = a, negative on the face y = 0.
and zero on all other faces. Hence the integral is

f f (— 2 ax?)dz dx = — % a®. (11)

In the integral f f 2 dx dy

(8)

‘dx dy is positive on the face z = a, negative on the face z= 0, and
zero on all other faces. Hence its value is

f f adzx dy = a®. (12)
0 0

Combining (10), (11), and (12), we find the result (9).

As an application consider the surface integral as given in
(11), § 77, for the amount of fluid flowing out across a surface in
the time d¢. This must be equal to the loss of fluid in the volume
bounded by the surface. The amount of fluid in an element
dx dy dz at the time ¢ is p dx dy dz and in the time ¢+ dt it is

(p+ Qal?) dt)dx dy dz. The loss in a single element is, then,

"

op
- '87 dt dx dy dZ

and in the Whole volume it is

-afff %

(T

13)

But the surface integral in (11), § 77, may be transforméd hy.
means of (7) into the space integral

0(pv=) o(pv,) 8(;027:))
dtfff( " + % + . dx dy dz. (14)
(1)
The two integrals (13) and (14) are equal, and hence we have

fff <a(%) a(f;;") + 6(22’) += >dx dydz=0. (15)

Now (15) is to be true for any volume T, no matter how small,
within which the integrand is continuous. Hence the integrand
must be everywhere zero, for if it were not, it would be possible
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to find a volume for which (15) would not be true. We he.ve,

therefore, 2(pvs) 3(;)1)',,) o(pv,)
oz T oy B> +3t 0 (o)

the so-called equation of continuity in hydromechanics.

In the particular case of a liquid for which p = constant, equa-
tion (16) becomes o0 o o

2y Oy P
Fyaln %y + 0 7)

79. Other forms of Green’s theorem. Let F(x, y, ) and G(z, , 2)
be two functions which are continuous and have continuous first
derivatives in the region in which S lies. Then the derivative of
F nermal to S is, by (10), § 35,

dF OF or oF
T %cosa—i—aycosﬁ—i-——cos'y. (1)
In (7), § 78, let us place P=@G @, Q= GQ—FZ R=G ?—— We
ox oy 0z

obtain, with the use of (1),
0G BF 3G oF 0GoF
ffG-dS—J[[ c)x or dy 9y+_d;-5_>d z dy dz
2 2 2
—I—ff 1 oF F & F :)F>dxdyd~, (2)

another form of Green’s theorem.
It is allowable in (2) to place G= 1 We then have the simpler

form 0*F
Jaas=[[J(G+ G e @

Also, in (2), we may interchange F and G and, subtracting the
new result from (2), have

Jem-ris=ffle(G+ 5+ %)

0°G 32(’ 0°G

—F <8x towr T

The results (2), (3), and (4) take simpler forms if F and G sre
functions which satisfy the Laplace differential equation

0%¢ dqu 0%
522 T o T o

]d dy dz. 4)

= 0.
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For example, (3) then gives
dr
f =, ds=0. 5)

(S)

As an application cor sider a charge of electricity e at a point
(a, b, ¢). The potential at a point P(z, ¥, z) at a distance 7 is

e
F=-
s

~ where r=V(@ -a)24+ (y—b)2+ (z—c)2.

Then for a region 7" which does not contain (a, b, ¢) we have
formula (5). But if the region T contains (o, b, ¢) the formula is
not applicable, since F' is discontinuous when r=0. We will

compute dF
f f ds
dn

directly for a sphere of center (a, b, ¢) and radius r which we will
denote by £. We have for this sphere

ar u_’f‘l_i<6>_ e
dn dr dr r?

b

where the normal is drawn outward from the sphere, and on the
sphere r = ro. Hence

f - S*—-—fde=—41re 6)

(2) (2)

Consider any surface S surrounding (a, b, ¢) and construct a
sphere 2 about (a, b, ¢) as a center. In the region T, bounded
by S and Z, formula (5) applies. Hence

F‘—“f as+ [ }
'(z‘)

In the second integral of this formula the normal must be
drawn outward from 7 and therefore into the sphere Z. Hence
the sign of (6) must be changed, and (7) gives

Vo
- dS = 0. )

dr
f —-dS=—4ne. (8)

W)
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In the same manner, if we have n charges of electricity e, es, - - -,
e, at points (a1, b1, ¢1), (az, b2, ¢c2), - - -, (@n, b, ¢,) inside of S,
we find that

f g—g—ds=-—41r(e1+e2+~-+e,,)=—47re; (9)
(S) dF
or if we place N = — ——, the normal force or intensity perpen-
dicular to S, then

.fdeS=41re. (10)
(S)

‘We will apply (10) to finding the intensity N due to a spherical
conductor of charge e. Take as the surface S a sphere of radius R
concentric with the conductor and surrounding it. By symmetry
the intensity N is constant on S. Hence (10) gives

fodS=47rR2N=41re;
. .

: (s) ‘
whence N=—.
I
Again, we will apply (10) to finding the intensity due to an
infinite circular cylinder of charge e per unit length. Take as the
surface S a circular cylinder of height unity and radius R the
axis of which coincides with the axis of the conduector. The charge
inside S is then that on a unit length of the conductor, it being
assumed that R is greater than the radius of the conductor.
On the upper and lower bases of § we have N = 0, since the
force is perpendicular to the conductor by symmetry. On the
curved surface of S, by symmetry, N is coanstant. Hence we

have, from (10),
fodS=27rRN=41re;
e

[©) 2

whence N = Y

80. Stokes’s theorem. If P, @, and R are three functions of u,
¥, and z, the linec integral

f(!‘dx—{-Qdy-dez) (>

)

along a space curve C is defined in a manner precisely similar to
the definition of a line integral ulong a piane curve.
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Let C be a closed curve, and let a surface 8 be bounded by C.
Let the equations of S be in the general form (1), § 563, and for
convenience let us write

oz oz oy By | _ o 2z

T TS w YT YT T YTw
Then we have
fP dx =f(qu du + Pz, dv) 2)
© © .
.___ff[i(,, )~-a—(Px)]dud @)
- " T b v N

(8)

since the argument which was used to obtain (4), § 73, may be
transferred without change to the surface S with the curvilinear
coordinates (u, v). The expression (3) is easily reduced to

[P dx = ——ff[g{ (TulYp — o) + —a—lz (xy2y — x,,zu)]du dv; (4)
. s oy 0z

()

whence, by (11) and (9), § 53,

op oP '
Pdr=— (—-— €OS ¥ — — COoS B)ds. (5)
R
Similarly, f Qdy =— f f <_8a_§ cos o — —Z% cos 'y)dS, (6)
and fRd ::—[f(——-cosﬁ-—-—%ccsa)ds (M

By adding (5), (6), and (7) we have Stokes’s theorem ; namely,

f(de+Qdy+Rdz)——-ff[<———zg—>cosa

(&)}
or _op op_ 2
+(8x % > B+< o )cos y]dS (8)

A word about signs is necessary. A change in the direction in
which the line integral is taken would change the sign of the left-
hand niember of (8), and a change in the direction in which the
normal to the surface is taken would change the signs of cos «,
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cos 3, cos v and therefore change the sign of the right-hand
member of (8). Hence there must be a relation between the direc-
tion of the normal to the surface and the direction of integration
around the ¢éurve. From the proof it appears that the relation
between the normal to the surface and the direction of integra-
tion must be the same as the relation between the normal to a
_plane and the direction of the integration in § 73. Hence an ob-
server standing with his feet on the surface and his head in the
direction of the normal will see the integration around C taken in
the positive direction.

From equation (8) it follows, by arguments similar to those of
§ 74, that in a simply connected region of space in which P, Q, R
and their derivatives are single-valued and continuous, the neces-
sary and sufficient conditions that the line integral (1) between
fixed limits should be independent of the path connecting those
limits, and that the same integral around a closed path should
be zero, are oP_9Q 9@ OR 9R 0P ©

oy ox o0z oy ox 0z
If these conditions are met, the line integral

(x, ¥, 2)
f ! (Pdx+Qdy + R dz)
(z

0r Yor %0)

defines a function ¢(x, y, 2) such that

_0, o0 p 29, (10)
ox oy 0z
as is easily shown by the methods of § 75.

Conversely, if there is a function ¢ for which equations (10)
are true, then equations (9) follow immediately. Hence equa-
tions (9) are the necessary and sufficient conditions that such a
function ¢ exists, or, in other words, that Pdx+ Qdy + R dz
is an exact differential, so that we may write

Pdx+ Qdy+ R dz=do. (11)
Apply this to a field of force in which the components of force

at each point are X, Y, Z. By definition the force has a potential
V if there is such a function V that

ov ov ov
%=—X, -a—y—-—Y, -a-z-——Z.

P
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From the discussion given above the necessary and sufficient
conditions for this are

0X oY 0Y 92 ©09Z JX

oy  or oz oy ox oz
and we have, then, Xde+ Ydy+Zde=—dv.

The work done in passing between two points (%o, %o, 20) and
(z1, Y1, 21) 18

(1, Y10 21) Xy U1 %)
f (de+ydy+2dz)=~f dv

(Zoy Yor Zo) =/ (X, Yo 20)

= V(xo, o, 20) — V{1, 11, 21).

The work done is then independent of the path and equal to
the difference of potential between the beginning and the end of
the path.

Again, if P=v, Q=v, R=u,

are the components of velocity of a liquid, that velocity is said
to have a velocity potential ¢ if there exists such a function ¢ that

_, 0_ 9% _
ox 0@ 8y——v"’ 5z "

In this case the motion of the liquid is ecalled irrotational,
whereas motion without a velocity potential is called vortex
motion. The necessary and sufficient conditions for irrotational
motion are that v,, v, v, satisfy the relations

ov, v, Ov, 0Ov, Ov, OV

—_— e —— — i ———— —_— e ——

oy ox o0r oy éx oz
From (17), § 78, it appears that ¢ must satisfy the partial differ-
ential equation Pp P 72 ¢ 32 ¢

oz opf

In hydromechanics the integral

Jf (v dx + v, dy -+ v, d2)

along any path is called the circulation along that path. It
appears that for irrotational motion the circulation around a
closed path is zero.
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EXERCISES
1. Find the value of

a,2 . 2
\d. 2 d
f(w [(z + y*)dz + 2 zy* dy]
along the following paths:
(1) A straight line.
(2) A parabola y? =4 .
(8) A portion of the z-axis and a straight line perpendicular to it.
2. Find the value of
(L), o
J Tyt dz + (Y — 2%)dy])
0, 0)
along the following paths:
1)y =3 x.
@) y?=9nm ]
{3) A portion of the y-axis and a straight line perpendicular to it.
3. Find the value of

f( ® 0022 — y?)d + z dy]

0, 2)
along the following paths:
(1) A straight line.
(2) A circle with center at O.
4. Find the urea of the four-cusped hypocycloid z = a cos? ¢,
y = a sin® ¢.
5. Find the area between one arch of a hvpocycloid and the fixed
circle.

6. Find the area between one arch of an epicycloid and the fixed
circle.
a(l — 2 at(l — %)
1+ YT e
corresponding to values of { between — 1 and +4- 1.

7. Find the urea of the loop of the curve r =

8. Find the area of the segment of a circle of radius a cut off by a
chord b units from the center.

9. Show that the integral
‘/;(‘(1(,)\2)(3 o(r 4+ 2 wvdr 4 (3 — y¥)dy)

is indépendent of the path, and find its value.

) x, y) —
10. Show that [1( “” (—%—f—i; ; dir + g.%_f_‘f d )
(1. x4y z°

is independent of the path, and find its value.
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2 2
@ 1)<1 Y g1 gy dy)
x

1, 0) 1;3
is independent of the path, and check by evaluating for two different
paths.

12. Find the area of the surface cut from the cylinder y2 + 22 = a?
by the eylinder x° + y*® = a®.

13. Find the area of the surface of a sphere of radius a intercepted by
a right circular cylinder of radius 3 @ if an element of the cylinder
passes through the center of the sphere.

14. Find the area of the surface of the cone x? + y? — 22 = 0 cut out
by the cylinder z* 4+ %2 — 2 ax = 0. .

15. Find the area of that part of the surface z = z

11. Show that f(

2
Y~ the projec-

tion of which on the plane X0Y is bounded by the curve r?=a?cos 2 6.

16. Find the area of the surface cut from the paraboloid y? + 2> =4 ax
by the cylinder y? = ar and the plane x = 3 a.

17. Find the area of the surface of the cone z?>+ y2 —422=0 cut
out by the cylinder x>+ 3> -4 2 = 0.

Apply Green’s theorem to the following integrals and verify by
direct caleulation :

18. ff (xz dy dz+yz dz dx -+ 2° d dy) over the sphere x2+ y2+ 22 = a2
19. ff (xdydz+ydezdx+z2drdy) over the cylinder 22 +y3*=a% 2=+ b.
20. ff (dy dz + dz dx + dr dy) over any closed surface.

21. ff (2 dy dz + y2 dz dx + z* dx dy) over the sphere 242 +2°=a2
22. Compute j (y2 dx+xy dy + zx dz) along the following paths:

1A stralght lme from the lower limit to the upper limit.
(2) A broken line consisting of parts parallel to the axes.

(1,1,1) . .
28. Compute f( 0,0.0) (yz dx + 2z dy + zy dz) along the same paths as

those given in Ex. 22.
24. Show that

f(de-}-Qdy-i—Rdz) fVP2+Q2+R2cos0ds,

where ds is the element of arc of the curve and 0 is the angle between
the curve and the direction P: @ : R.

25. If F satisfies Laplace’s equation, show that

1[0+ (2 (2 =

(T (S)



CHAPTER IX
VECTOR NOTATION

81. Vectors. A vector is a directed magnitude. Examples are
foree, velocity, acceleration. A vector may be graphically repre-
sented by a portion of a straight line with a definite length and a
definite direction. The position of the line is unessential. Two
vectors are equal if they have the same
direction and magnitude, no matter how
they may lie in space. One vector is the
negative of another if the two have the
same length and opposite directions.

A scalar is a magnitude without direc-
tion. Examples are temperature, density,
potential. The length of a vector is a scalar 8
quantity.

It is customary to represent vectors by
Greek letters, o, 8, v, - -+, or blackface a,
b, ¢, - - -. The length of a vector may then
be denoted by |a| or |a| or the corresponding lightface letter a.

Two vectors are added by the law of composition of forces or
velocities. Thus, if « and B8 are two vectors, their sum is the
diagonal of the parallelogram of which «
and 3 are two sides. Thus, in Fig. 78,

Yy=a+ . (1)

Any number of vectors may be graphically
added by taking them in any order and
placing the beginning of each on the end of
the preceding. The sum is then the vector
which joins the beginning of the first vector
to the end of the last vector. Thus, in Fig. 79,

f=a+B+v+o.

Take three mutually perpendicular directions from a point O
(Fig. 80). Let i, j, k be the vectors of unit length in these
208

FiG. 78
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directions. These directions shall be taken so that an observer
standing with the vector k running from his foot to his head
sees the rotation from i to j as a positive rotation.

Let « be any vector from O whose projections on the three
directions are A,, By, and C, respectively.
Then, from the law of addition,

a= Aji+ Bij + Cik, 3) .
and |a|=VAi24+ B2+ Ci2 4) j B:
Then, if >
| B = Aai + Bsj + C2k, //k/o ! A l/‘x
it is readily seen that FiG. 80
a4+ B=(A1+ Az)i+ (Bi + Ba)j + (C1 + Co2)k. (5)

A vector is multiplied by a positive scalar quantity by multi-
plying its length by that quantity without changing its direction.
it is multiplied by a negative scalar quantity by reversing its
direction and mulliplying its length by the absolute value of
the scalar.

Two vectors may be multiplied in two ways, giving rise to a
scalar product or a vector product, to be discussed in the next
sections.

82. The scalar product. The scalar produet, or the dot produect,
of two vectors « and 3 is defined by the equation

a-f3 = ab cos 6, 1)

where @ and b are the lengths of « and B respectively, and 6 is
the angle between them.

In Fig. 81 let OA be the vector «,
OB the vector (B, ON the projection
of 3 on «, and OM the projection of «
on 3. Then

abcos § =ON-0A=0M-0B, (2) O

so that the scalar product of two vectors
1s the product of the length of either vector by the length of
the projection of the other upon it.

From (1) we have B = a3, 3
so that the scalar product is commutative.

Also from the projection’ property (2) it is evident that

B+ v) =aB +a, ' 4@

Fic. 81
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so that the scalar product is distributive. From (4) it follows that
(@+0)-(B+7v)=aB+avy+ 688+ dy,

as in ordinary multiplication, and so for more extended products.

From (1), a-a = a2, (5)
so that the scalar product of a vector by itself is equal to the
square of its length.

From (1), if af3=0,
we have either ¢ =0 or b =0 ov cos § == 0; that is, one of the
vectors is of zero length or the two vectors are perpendxcular
Assuming that the vectors are not of 42T
length, we say that the oanishing of the
scalar product of two vectors is the condition
for their perpendicilerily.

It follows that “"canceliation’ as em-
ployed in algebraic equations is not Jegiti-
mate for vectors. That is, if

af=avy, (6) FiG. 82
it does not follow that 8= vy. For from (6) we have. by subtract-
ing -y from each side, B

— ey = 0,
andiw by (4)1 O{'(L’) 7) =0;
whence it follows that 8 — v is perpendicular to «. This is graph-
ically shown in Fig. 82, where the projections of v and 3 on «
are equal.
If i, j, k are the perpendicular unit vectors defined in § 81, then
ii=1, jij=1, kk=1,

j=0, jk=0, ki=0, 0
If & == Ali + B1j —{- C[k
and B = Aqdi 4 Bzj + Cok,

a3 may be computed by the distributive law of multiplication
and reduced by (7), with the result

o3 = A1Az + BBz + C,Ca. (8)
From (1) of this section and (4) of § 81 we get
AjAs+ BIR C\C ‘
COSB‘-——- 1 1‘ IL2'+ 1 -, \9)

‘ VA2 + Bi2+ O \/ Ag? 4 BQZ 22
and the condition for the perpendicularity of the two vectors is
A1Ag + BiBs + (102 = 0, (10)
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83. The vector product. The vector product, or cross product, of
two vectors o and B is defined by the equation

aX B=wvabsinf, ¢S

where a and b are the lengths of o and 3 respectively, 8 is the
angle between them, and » is a unit vector perpendicular to «
and B and in such a direction that an observer standing so that
v runs from his feet to his head sees
the rotation from « to 8 as positive.
This is shown in Fig. 83. The length
of the vector a X 8 is in linear units
equal to the area in square units of the
parallelogram determined by « and £.
From the definition we have

aXa=0, @)
so that the vector product of a vector by itself is zero. In general, if
aXB=0, 3)

the vector « is parallel to the vector 3, so that the condition
for the parallelism of two vectors is the vanishing of their vector
product.

From the definition it follows that to interchange the order of
the factors a and B changes the direction of ». Hence

BXa=—aX/}, 4)

so that a vector product is not commutative.

Also « X (B X <) is not equal to (@ X 3) X v, where a, 8, and v
are three vectors in general positions. For the vector 8 X v is
perpendicular to the plane of 8 and v, and therefore the vector
aX (8 Xvy) must lie in the plane of 3 and +. Similarly,
(¢ X B) X v lies in the plane of « and 3. Hence in general

axX (BXy)#(axB) Xy, )

so that a vector product is not associative.
It is true, however, that

YyX(a@+B)=vyXat+vyXp, (6)

so that a vector product is distributive.
To prove this we use the fact that the projection of any closed
surface on any plane is zero if the sign of the projection of each
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portion is determined, as in § 76, by the cosine of the angle
between the outward normal to the surface and a fixed normal
to the plane. Apply this to the prism OAB-CDE (Fig. 84),
where OA is the vector «, AB the vector 3, OB the vector a + 3,
and OC the vector ~.

Then the vector % (a + 8) X « is equal to the area of AOB, the
vector 3 @ X (au+ ) is equal to the area of CDE, the vector
B X v is equal to the area ABED, the
vector ¥ X (a + ) is equal to the area
OBEC, and the vector « X v is equal
to the area 0ADC, and all these vectors
are directed outward from the prism.
Also the sum of the projections of these
vectors on any line is zero, since it is
equal to the sum of the projections of
the faces of the prism on the plane
perpendicular to that line. Hence the sum of these vectors is
a vector whose projection on any line is zero, and therefore that
vector is zero. Hence

Ja+ B Xatdax(@+B) +BXy+vX(@+B) +axy=0.
Reducing this by the aid of (4), we have
—YXB+yX(@+pf)—yXa=0;

whence (6) follows.
From (6) follows

Y+ X(a+B)=vXa+yxXB+oxa+dxp, (T)

as in ordinary multiplication, with the single exception that the
order of the factors must be carefully preserved. The extension
to any number of vectors in each factor jaxf=axy
is obvious.

As in the case of the scalar product, B—v
so-called ‘‘cancellation” in a vector
equation must be avoided, The equation

a
aXvy=aXxXf FIG. 85

leads to a X (y — B) = 0, which; by (8), means in general that
a is parallel to v — 3. This is shown in Fig. 85, where the area
of the parallelogram defined by o and 8 is equal to that of the
parallelogram defined by « and ~.
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Let i, j, k be as in § 81. Then
ixi=0, jxj=0, kxk=0,
iXj=—jxXi=k jXk=—kXj=i kXi=—iXk=j.
Then, if w = Aji 4+ Bij + Cik,
B = Asi + B2j+ Cok,
and we form « X 3 by {7) and reduce by (8), we have
a X = (BiCzs— B2C1)i+ (143 — C241)j+ (A1B2: — A2B))k

)]

P j k
=|4A By Ci|.
As Bs Co

84. Curves. From the origin of coordinates O draw a vector
OP =r. Thon, if r is a function both in direction and magnitude
of g single parameter ¢, the extremity of r

describes a curve, the equation of which may T
be wrilten r = f(t). (1) ar
dt

This may be brought into connection with
the notation of § 51 by drawing the unit
vectors i, j, k as in § 81. Then, if x, ¥, z are
the coordinates of P,

r=xi+ yj+ 2k, (2) 7
and if the equations of the curve are those
given in § 51 equation (1) becomes

r=fi®)i+ f2(0)j + f5(Dk; 3)
so that (1) represents in one equation the O
three equations of § 51.

Let P (Fig. 86) be the point corresponding to a certain value
of t and let @ be the point corresponding to ¢ + At. Then OP =1,
0Q =r + Ar, and, by the law of addition of vectors, Ar = PQ.
Ar
At
As At approaches zero as a limit, the point @ approaches P, and
the secant approaches the tangent at P, under the assumption
that the curve is continuous and has a tangent. At the same
time, under the assumption that’ the curve has a length, the ratio
of the chord PQ to the increment At is the same as the limit of
the ratio of the arc PQ to At.

FiaG. 86

Hence is the vector PR in the direction of the secant PQ.
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. Ar dr
Hence we may write  Lim = = -,

dr -0 AL dt
where 7 is a vector PT' w1th the direction of the tangent to the

curve and with a length ---: s being the length of the curve.

Taking 7 as a unit vector along the tangent, we have
dr ds

, a=Ta @
or, in differential notation,
dr = 7 ds. )
This result may be checked from (2) since
dr=dxi+dyj-+dzk, (6)

which is a vector with the direction of the tangent and with the
length @i T dy’ ¥ d2 = ds.
Let F be any function which has both direction and magnitude

at each point of a certain region. Such a function is a wvector
function, and we may write

F: P(x) Y, Z)i —"Q(Ir Y, z)j + R(x) Y, z)k'

Then, if F makes an angle ¢ with the direction of the curve.
and |F| = F, we have F-dr = F cos ¢ ds, which is the product
of the projection of F on ds multiplied by ds. On the other hand

F = Pi4 Qj+ Rk,
dr=drit+dyj+dzk;
whence Fdr= Prdx+Qdy+ Rdz. (7

A simple illustration is obtained by letting F be a force. Ther
P, Q, R are the components of the force, and F-dr = F cos ¢ ds
is the element of work done in moving through a length ds of the
curve.

85. Areas. A vector is a magnitude with which a definite direc-
tion is associated. Now a plane area determines a definite direc-
tion; namely, that of the normal to the plane. Hence a plane
area may be represented by a vector whose magnitude is equal te
the scalar area «nd whose direction is perpendicular to the plane.
Let there be given an area of scalar magnitude A lying in a plane
the normal to which makes angles «, 8, v with OX, 0Y, 0Z
respectively. The vector A is then a vector of length A making
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angles a, 8, v with the codrdinate axes. The projections of this
vector on the axes are, respectively, 4 cos ¢, A cos 8, A cos 7.

Hence A= Acosai+ AcosfBj+ Acosvyk. 1)

It is to be noticed that A cos « is the projection of 4 on the
plane YOZ, that A cos § is the projection of A on the plane ZOX,
and that A cos <y is the projection of A on the plane XOVY.

If we have a surface S, there is obviously no definite direction
connected with S. There is, however, a definite direction to each
element dS; namely, that of the normal to the surface. We have,
therefore, a vector element of area dS where, as in (1),

dS=cosadSi-+cos3dSj+cosydSk. 2)

Now, if F=Pi+Qj+ Rk

is defined at all points of the surface S,
FdS=FcospdS=(Pcosa+Qcos 3+ Rcosvy)dS, (3)
where ¢ is the angle between F and the normal to S.

An example is obtained by letting F = pv, where p is the den-
sity of a fluid and v its velocity. Then F-dS is the amount of
fluid per unit time which flows over the area dS (§ 77).

86. The gradient. We have defined vector functions in § 84. In
distinction, a function F(x, ¥, 2) to which a magnitude but no
direction is assigned at a point (zx, ¥, 2) is called a scalar function.

We have seen in § 35 that for such a function we may construct
a family of surfaces F(z, y,2) =c, Q)

and that the maximum rate of change of F takes place in a diree-

. . dF .
tion normal to these surfaces and is equal to e where 7 is meas-
ured along the normal. "
Let » be a vector of unit length and let us write
dF

Then VF (read ““del F’’) is a vector function which gives in
direction and magnitude the maximum rate of change of the
function F at each point of space for which F is defined. It is
called the gradient of F.

We have seen in § 35 that if a distance s is measured in a
direction making an angle ¢ with n, then

L cos ¢. 3)



GRADIENT 211

~ We may apply (8) to istances measured parallel to the coordi-
nate axes and obtain
OF dF oF dF oF dF

T S Gy = g sB, - =-cos7, (4)

where cos a, cos 3, cos v are the direction cosines of the normai

jam Al

dF .
and where the change from — to — etec. is made to conform to

dx ox
usage. Hence we have in (4) the components of VF. Consequently
oF oF or
F=-——i4—— 5
VE= ity it % %)

|Vrl= dn J((}i)‘ <()I’> <3§>2 6)

Equation (5) may be written
VF=<%i+%j+7?k>F, ¥p)
and we define = + — ] + - ‘8)
as the operator del. The manner in which del operates on a sealar

function is shown in (7) as interpreted by (5).
The operator V has many properties similar to those of differ-

entiation. Thus V(F+G) = VF+ VG,

V(FG) = FVG + GVF, (@)
w<__> _GVF - FNC
G G?

87. The divergence. In § 86 the operator V has been applied to
a scalar function. That operator may, however, be applied to a
vector function and in two ways: either by analogy to a scalar
product or by analogy to a Vector product. The first method
gives us, by definition,

V.F_—:(b-—-—i—[—-a?—j—f-:@k)-(})i‘f‘Qj‘f'Rk)
oP 0 OR
*--—Jr—g-i-‘r
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This is called the divergence of F and is Written div F. We have

8P 0Q
di F=-——+4—-
ivF=V. + E» {— Bz (1)
If we apply this result, together with (8), §85. to Green’s
theorem in the form (7), § 78, replacing the element dx dy dz by
a general volume element dV, we have '

[Twroreffow=ffra @

(]

"'he reason for the choice of the name divergence may be seen by
interpreting F as equal to pv, where p is the density of a fluid and
v its velocity. Then each integral in (2) is the amount of fluid per
unit time whieh flows out of a space region. Applied to an infini-
tesimal volume it appears that div F represents the amount of
fluid per unit time which streams or diverges from a point.

38. The curl. Tt is also possible to combine the operator v with
a vector funetion by analogy te a vector product. The result is
a vector called the curl of F. We have, by definition,

i i k|
0 0 0
P — U F__ A
curl F =V X % oy Ep
P Q@ R
n_say (o0 _om, e _or)
”_(du/ (/z> + 0z ox i+ or oy k. @

if wv apply this to Stokes’s theorem, (8), § 80, and use also
7). § 84, we have
} F-dr =ffcur1 F-dS =ffv x F-dS. (2)

9 ®) )

The reason for the use of the word curl is hard to give without
extended treatment of the subject of fluid motion. The student
may obtain some belp by noticing that if F is the velocity of a
liquid, then for velocity in what we have called irrotational
motion, curl F = 0, and for vortex motion, curl F # 0.

It may be shown that if a spherical particle of fluid be consid-
ered, its motion in a time df may be analyzed into a translation, a
deformation, and a rotation about an instantaneous axis. The curl
of the vector v can be shown to have the direction of this axis and
a magnitude equal to twice the instantaneous angular velocity.
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EXERCISES

1. If @, B, v are vectors to the three vertices of a triangle, show that
the vector to a point two thirds of the way from any vertex to the middle
point of the opposite side is 4 B+ vy

—
2. Find the direction and the magnitude of each of the vectors

a8 X B8

o
—a and —— X .
[a'41s 4

8. Show that «a-(8 X v) is the volume of a parallelepiped three
edges of which are the vectors «, 3, v meeting in a point. When will
the volume so computed be positive? negative?

4. From Ex. 3 show that

a-(BXy) =By Xa)=7v(aXxp.

5. From Ex. § show that
) a-(BXy)=0
is the condition that «, 8, v lie in the same plane or are parallel to the
same plane.

6. Show that a(a X B) =0.

7. From Ex. 8 show that the volume of a tetrahedron the vertices of
which are (0, 0, 0), (1, %1, 21), (L2, Y2, 22), (T3, Y3, 23) i8

T Y %
Tl y2 22
T3 Yz 23

8. Using the unit vectors i, j, k, prove that )
(@ x B) X (v x38 =(ax.y X B~ (B-y X da.
9. Using the unit vectors i, j, k, prove that
(@ X B)-(v X 8) = (a-7) (B-8) — (B-7) (a-D).
10. Using the unit vectors i, j, k, prove that
ax (BxY) = (@y)B— (@B,
(ax ) xXv=(av)B~ (7B
11. Given a triangle with vector sides «, (3, 7, prove that directions
may be so taken that Ny = (@ — B(a— B),
and thence obtain c?=a?+ b®— 2 ab cos 6.

12. Prove by vectors that the sum of the squares of the diagonals of
a parallelogram is equal to the sum of the squares of the sides.

18. Find the gradient of xyz.

14. Find the gradient of 2? + y? + 22
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15. Find the gradient of log (x2 + y? + 22).

16. Prove formulas (9), § 86.

17. Find the divergence and the curl of the vector function
r=zi+ yj + zk.

18. Find the divergence and the curl of the vector function

$i+gj+§k, where r= Vz?+ y® + 7%

19. Find the divergence and the curl of the vecior iunclion
(bz — cy)i + (cx — az)j + (ay — ba k.
20. If dr is defined as in § 84, show that
V/f-dr = df,
where df is the differential change in f in the direction dr.
21. Show that the derivative (or differential’ of a vector of constant
length is perpendicular to the vector. ’
22. Show that if r is a vector of unit length, then dr is a vector per-
pendicular to r and equal to the angle df between r and r + dr.
_ d%x
T ds?
is a vector whose direction is that of the principal normal and whose
magnitude is that of the curvature, and hence that
d’r 1
? R”
where R is the radius of curvature and ¢ a unit vector along the prin-
cipal normal.
24. If n, t, and c are unit vectors along the binormal, tangent, and
principal normal respectively, show that
dn d
T= a—g = &;(t X C)
is a vector whose magnitude is the torsion.
25. If a body describes a curve r = f(t), the velocity is defined as

v= dr. Show that v = vr, where v is the speed %; and 7 is a unit

23. For a curve show that

tangent vector.
26. A vector force being defined as

show that the components of force parallel to 0X, 0Y, and OZ are
m & m & m &
dr? dt? dt?
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27. Placing v = v7, where v is the speed % and 7 a unit vector along

the tangent, show from Ex. 25, and using Ex. 23, that

F=m d’s , mo?
IS R
Hence infer that the moving particle is acted on by two forces: one
d? 2
equal to m d—t—f- along the tangent, and the other equal to 1%- directed

toward the center of curvature.
28. Show that the vector area dA between r and r 4 dr is
dA = 1(r x dr),

and hence that dA 3 x v).

dt

29. Show that if the force acting on a moving particle passes through
a center O, then EXF=0

and hence the rate of charge of A is constant. Prove the converse.
80. If a curve is given in polar coordinates (r, 6), place
r =1r;,
where r is the sealar length and r; is a unit vector. Hence show that
dr dé
vV=—1 +7r—n,
at g

where n is a unit vector perpendicular to r.
Then show that

da?r don 27 . dr do d?
F—m['(}'t';—r<—d?> ]r1+m<2(—£d—t-+r:ﬁg>n,

and find the components of F along r and perpendicular to it.

81. A body is revolving about an axis 04 with constant angular
velocity w. Let o be a vector in direction 04 with magnitude equal to
w, T a vector from O to any point P of the body, and v the velocity
of P. Prove that ve=a X T,

32. Prove that if vis asin Ex. 31, curiv=2 a.
383. Prove that

[fevE-das=[[[VF-VvGav+ [[[cv-VFav.
(S) (T) (T)
84. Show that
2 g4=v2s.
ox Ve=v ox



CHAPTER X

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

89. Introduction. The equation
f(z, y, ¢) =0, 1)
where ¢ is an arbitrary constant, defines a family of curves, one

curve of the family being determined by a given value of c.
The direction of a curve of the family at any point is given by

o
dy __ 9z 2
=% @)
oy

which in general involves c.

By §40, equation (1) determines ¢ in general as a func-
rion of * and y, and the substitution of this value of ¢ m
2) gives an equation of the form y

d
F(x v, ﬁ) =0. 3)

This gives a relation between a
point and a direction of a curve
through that point which is true
for any point and any curve of the
family (1). It is called the differen-
tial equation of the family.

Conversely, to any given equa- O
tion of the form (8) corresponds
an equation of form (1). This we shall prove in the following
section, but it may be made graphically plausible as follows:

If the cobrdinates of a point P; are assigned to z and y in (3),
that equation determines one or more directions through P,
(Fig. 87). Following one of these directions, we may determine
another point, P;. If the codrdinates of P, are substituted in
(3), a direction is determined by means of which a third point,
Pj3, is found. Proceeding in this way, we trace a broken line such

216

Fic. 87
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that the coordinates of every vertex and the direction of the
following segments satisfy (3).

Now it may be shown that this broken line approaches a curve
as a limit as the length of each segment approaches zero, and this
curve has the property that the cotdrdinates of any point on it
and its direction at that point satisfy (3).

Since in this construction P, may be any point of the plane,
there is evidently a family of curves satisfying (3). The constant ¢
in the equation (1) may be taken, for example, as the ordinate of
the point in which a curve of the family cuts the axis of y or any
other line x = x;.

90. Existence proof. Consider the differential equation

dy ‘ .

with the assumption that f(x, ¥) may be expanded into a power
series in the neighborhood of z = %o, ¥ = 0. Without loss of gen-
erality we may take xo = 0, yo = 0, since this amounts to a change
of coordinates, and write (1) in the form

d ‘ |
("i_le‘ = doo .+ alOT + a()ly -+ aZoxz + allxy + a02y£ +_ - (2)

In (2) substitute
y=cw+ cox® + e’ - - . 3

The coefficients ¢; are readily obtained by comparing like
powers of x. We have
€1 = Qoo,
2 ¢2 = a0 + ao1ly,
3 ¢3 = @20 + a1161 + o261 + aoiCa,
4 ¢4 = azo + a2 + a120:* + 003613 + 2 ao2cic2 + anice + aoscs,
ete.

The coefficients of (3) are then completely determined. If (3)
converges, it defines a function y which satisfies equation (1). We
must therefore prove the convergence of (8). For that purpose
consider the equation

dy M

“ (1-90-Y)

= boo + bioz + by + - - -, 4)
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where M, r, p are determined as in § 28 with reference to the
series (2). The function M

o

dominates the function f(z, ¥), so that b;z > |a;|. Then, if we
solve (4) by a series

y=Cx+ Cox?+ Cax® + - - -, ' (5)
the coefficients C; > el

Hence if (5) converges, so does (3).
But equation (4) may be soived directly, since it may be

written o M
< - —)dy = dx;
o x
1 —_——
r
. v e (1%
whence vy P Mr log \1 r)’

the constant of integration being so taken that ¥ = 0 when x = 0.
Then

.
y::p—-\,!p3+2p1|r17‘10g(]—%>’ (6)

where we take the sign of the radical so that ¥ = 0 when x = 0.
Now by direct application of Maclaurin’s expansion of a func-
tion, (6) may be expanded into a convergent series which can be
no other than (5). Hence (3) converges.

We have shown that for any point (xo, ¥o) for which f(x, y) has
a series expansion, there is one and only one solution of (1), If
flx, y) is a multiple-valued function, there will be a series expan-
sion and a solution correspending to each value of the function.
For example, for d o
Y n s Va2 4 y? (7)

dx -

there will be through each point two solutions corresponding to
the two signs of the radical.

Also if f(x, %) cannot be expanded into a series, the proof fails.
This may happen at a point for which f(x, y) becomes infinite or
indeterminate. For example, consider

Y ®

de =z



FIRST-DEGREE EQUATIONS 219

Our method fails for any point for which =0, 4y +0. But
this difficulty may be removed by writing the equation as

dxg

and finding x as a series expansion in y. A more fundamental
dlﬁiculty occurs when x = 0, y = 0, for then the right-hand s1de
of (8) is indeterminate. In fact, the solution of (8) is

y = cx,
and through the origin go all the lines of the sulution.

91. Equations of the first degree. The problem of proceeding
from a differential equation (8), § 89, to its solution (1), § 89, is a
difficult one which can be sclved explicitly only in the simpler
cases. We shall consider in this section equations in which _lﬁ
appears in the first power only, so that the equation is of the form

M dx + N dy = 0. ¢h!

We have the following cases:

CasE 1. Variables separable. If the equation is in the form

fulzydr -+ f2(y)dy = 0, (2
the variables are said to be separated. The solution is then
f fi(z)da + f f(y)dy = ¢, (8

where c is an arbitrary constant.

The variables can be separated if M and N can each be fac-
tored into two factors one of which is a function of x alone and
the other of y alone. The equation may then be divided by the
factor of M which contains ¥ multiplied by the factor of N which
contains x.

For example, (1 — 2%)dy + (xy — ax)dr =0

. d © dx
may be written U + =0

which gives log (y —a) — 2 log 1 =2 =c¢,

or iog ——=;
\/—
whence follows y—a=kV1—z2

where k is an arbitrary constant.
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CaAsk I1. Homogeneous equation. When M and N are homo-
geneous functions (§34) of the same degree =, equation (1) is
said to be homogeneous and may be solved as follows:

Place y = vx. Then dy = v dx + = dv, and (1) takes the form

z"f1(9)dx + x"f2(v) (v dx + x dv) = 0, 4)

and the variables are easily separated. The substitution z = vy
may also be made if more convenient.

For example, in (2> —y¥dx +22ydy =0
place y = vx. There results

der 2vdy
z + 1402 0;
whence (1403 =c.

Replacing » by g gives the solution
2% 4 4% = cx.

CASE I11. Equation with linear coeffictents. The equation

(a1 + biy + c1)dz + (azx + bay + c2)dy = 0 )]
may usually be made homogeneous as follows :
Place x=x'+h, y=y +k,
after determining & and k so as to satisfy the two equations
ath+bik+c¢,=0 and a2k + bk + c2=0. (6)

The differential equation then becomes :
(ax’ + biy')dx’ + (ax’ + bay’)dy’ = 0, )
which is homogeneous.
An exception to this method occurs when equations (6) can-
not be solved for & and k. In this case as = kay, by = kb,, where
k is some constant. Then, by placing a;x + by = «’ the variables

x and z’ are easily separated and the equations can be solved.
* CASE IV. Linear equation. The equation

dy _
az + Py=Q, ®

where P and @ are functions of z only, or are constants, is a
linear equation of the first order.
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. d Pdx\ _ _[Pdz dy Pdx
Since 7 (ye/ )= e/ o + PyelPe
equation (8) may be written as
d .
5 el 7¥) = Qel "%, ©
whence yel P = f QeJP%dx + ¢,
and y=eJP% f Qe/ Py - ce~ P, (10)
2 W
For example, 1—2% 7x + 2y = ax
. dy x ar
may be written dx+1——x2y—1—-x2’
C . . x ax
which is of type (8) with P = - Q= Ty Then
) rdx
edex — efi‘:cé = g~ Flog (-2 __==1 .
V1 —zx2
Therefore y= \/l—xlf(l %dx—i—c\/l—xz
— x?)

=a-+cVI1— 22
CASE V. Bernoulli’s equation. The equation

1
Q+Maw, (11)

where P and @ are functions of z, or constants, is a Bernouilli
equation. It may be made linear by dividing by y™ and substi-
tuting '~ " = 2.

CasE V1. Ezxact equation. By § 36, when

oM _ oN

oy ox
equation (1) may be written df =0, (12)
the solution of which is f=c.

The funection f ma& be found either by the method of § 36 or
by that of § 75.
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CaAse VII. Solution by integrating factors. The equation
Mdx+ Ndy=20 (18)
always has a solution of the form
S, 9, ¢) =0,
which, by the theory of implicit functions, may be written

bz, y) =c. (14)
o
dy ox
From (14) we get = _8;9,
Y
which must agree with (13). Hence there exists a function u such
—=uM
ox
(15)
0¢
and .— = uN.
W b a6
Then u(M dx+ N dy) = e dz + 5; dy = do. (16)

The function u is called an integrating factor. Our work shows
that an integrating factor always exists, and that if an equation
is multiplied by it the equation becomes exact.

There are an infinite number of integrating factors for a given
equation. For if ¢ is determined by (16), and f(¢) is any function

of ¢, then ¢ o) (M dz + N dy) = f(¢)de = dF, an

so that uf(¢) is an integrating factor.

No general method is known for finding integrating factors,
but the factors are known for certain cases. We give a list of the
simpler cases, leaving it as an exercise for the student to verify
by differentiation that each of the equations mentioned satisfies
the condition for an exact differential equation after it is multi-
plied by the proper factor.

;d::f"ﬂ ON
oy ox e - . .
1. If —L\T—— = f(x), then e//®% ig an integrating factor.
4
oM oN

2.1 _fg_j_;_d_x_ = f(y), then o~ Jiwav ig an integrating factor.
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3. If M and N are homogeneous and of the same degree, then
——————is an integrating factor.
TN integrating or .
4. If M =yfi(xy) and N = xfs(xy), then ————— {5 an inte-
. M —yN
grating factor.
5. /™% is an integrating factor of the linear equation

i{f + yfi (@) = falx).

As a practical point the student should look for an integrating
factor only after he has tried to integrate by other methods.
As an example, consider
(4 2%y — 3 y*dx + (&° — 3 ry)dy = 0.
EM 0 7\

cy or 1
x

Here e 2z
N
14 . . .
Consequently eJ 70 ¥ 1s an integrating factor. After mulir-
plication by the factor the equation becomes

4 x*y—3 a:z/zﬁda' + (x* — 3 x%y)dy = 0,
the integral of which is z*y — § z%y? = c.

CASE VIIT. Solution by sertes. Let the differential equation be
put into the form .
—- = f(x, ¥). (i8)
dx
We may then compute
d*y _of [ -of dy
de® "~ or | cpdr
d?y r3~f “f dy 82f ’dy) of d%y
de® ~ or* e (’! oy dr " oyt <ur 2y dx?’

and all succeeding derivatives. We may then substitute the values

fdyh (d4
2 = X9, Y = Yo, obtaining | ---; (l A . ete., and the Taylor series
i .L 0 ’.I"‘ 0

o1 /d‘gi 2
= ?/n +‘ (d' /U - Ly -+ = ‘)' \d:) })(’r - Xo) Tty flg)

which is a solution of the differential equation.
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Another way is to substitute in (18) the series
¥ =1to+ a1(x — x0) + az(x — 20)* + - - - (20)

and determine a;, a2,” - - by the method of undetermined coeffi-
cients. If f(x, ) is expanded into a Tayior series in the neigh-
borhood of (xo, %), equation (18) takes the form

d
2 = ¢o + ¢1(&x — 2o) + c2(¥ — Yo) + c3(x — x0)?

+ ca(x — 20) (¥ — %) + C5(y — Yo)2 + - - -,
Substituting from (20), we have

a1 + 2 az(x — x0) + 8 as(x — x0)* + - - - = o + €1 — %0)
+ colai(x — xy) + az(x — 20)° + - - -]
+ ca(x — 20)% + ca(x — wo) [ar(x — o) + - - -]
+eslar(@ —x0) +- - P4 :
whence by equating coefficients of like powers of (x — xo),

a1 = Co,
2 a2 =c1 + ca0y,
8 a3 = c2a2 + ¢3 + caay + c5a42,
ete.

As an example, consider
dy 2
Y _ 2 )
dz + ¥
and let us look for a series in ascending powers of xz. We have
2o = 0, Yo = ¢, ¢ being arbitrary.
By the first method,

Wty <%>= e,

dx dx o
Z%’i*'bii”%’“ fo’ (fijl) devoe
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Therefore
y=c+c2x 4 c3x? +
By the second method, place
¥=c+ mx+ aw? +age® 4 - -
and substitute in the equation. We have
a1+ 2ax+8ase®+4ax+ -
=22 4 (¢ + x4 apx® + agx® - - )2
=c2+2mex+ (L+ a2+ 2a20)22 4+ (2a162 4 2 @ze)xd 4 - -+
143 ¢+ 6c°

whence a;=c? az=c>, a3z = g =T

14+3c¢*

5
: x+c+6¢: ‘

6 /AR SN

b

as before.
92. Equations not of the first degree. We may write equation
. 9.

(8), § 89, in the form Fz, y, p) = 0, @

d—z- This is the general differential equation of the first

order and may sometimes be solved in the following cases :

Cask 1. Equations solvable for p. 1f (1) is considered as an
equation for p, it may sometimes be solved into a number of
distinet equations of the type

p = ¢(z, ¥). (2

If f(z, ¥, ¢) = 0 is a solution of (2), it is ebvicusly a solution
of (1). We shall have as many solutions of (1) as we have equa-
tions (2), and these solutions may be left distinet or combined
into one by multiplication.

As an example, consider

where p =

22p° — 2 p22 4 (2 xiy - 2t — y2)p — 22 2% — &t — y2) = 0.

This may be solved into the three equations

¥ Y
== 2, == o =, T e x,
p 4 " x P x +
the solutions of which are
y=2x+¢, y+22—cx=0, 2—3axy+c=0,
~and the solution of the original equation may be written

W—2x+c)(y+x?—cx)(@® —8ay+c)=0.
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As another example, the equation

(dy>+2xg_q_ =0
2
gives p:..%/i__@_;/j:i,

the solution of whichis y2 4 2 cx — ¢2 =
independently of the sign of the radieal.

CaAsk II. Equations solvable for y. Solving (1) for y, we may
have one or more equations of the form

y = f(z, p). 3)

Differentiating with respect to x and replacmg by p, we have

an equation of the form dp dx
P 4’< d )

~

@)

where p and z are the variables.
Let the solution of (4) be of the form

Y(x, p, ¢) = 0. ®)

The elimination of p from (3) and (5) gives an equation between
z, ¥, and ¢ which is in general the solution of (1). But the process
of elimination may bring in extraneous factors, and the solution
should be tested by substitution in (1).

If the elimination cannot be performed, equations (3) and (5)
may be taken simultaneously as the parametric form of the solu-
tion, with p as the parameter.

As an example, the equation

:cp‘“’»~2yp+ar=0 (6)
may be written y = I + ;
. o 2 2 P
whence, by differentiating,
1y \) [x  ar \dp
p 2 (‘p r »/ + \2 ¢ 3:>2> dic
, @ _ N\ _xdpy_ 7
or (p p/ (\ 5 'irr,) = 0. (0

The first factor gives p = 4+ Va, and this value, substituted in
(6), g’iVG‘S Y= \/TL (8)

This is found on trial to satisfy (6).
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The second factor of (7) gives

y="+5> 9
which also satisfies (6).

It appears that (9) contains an arbitrary constant and therefore
represents the family of curves which form the general solution.
The solution (8), however, is peculiar, or singular, in that it contains
no arbitrary constant and does not belong to the family (9).
Singular solutions will be discussed in § 95.

A note of caution is necessary here. The student may be
tempted to integrate each of the equations

p=+Ve and p=cx
instead of substituting in (6). If he does, he will find
cx?
y;ixVE+c1, y="5+c. (10)
However, the constants of integration are not arbitrary, for

substitution in (6) gives ¢; =0, ¢z = —%- Hence (10) agrees with

(8) and (9). 2
Cask II1. Clatraut’s equation. The equation
¥y =pz+ f(p) (11)

is called Clairaut’s equation. It is a special but important case of
an equation solved for y.
Differentiating with respect to x, we have

192 _ ,
; [z + f(p)] i 0. (12)
The factor ﬁ = 0 gives p = ¢; whence the general solution of the
equation is y = cx + f(c), ) (13)

which may obviously be written down at sigh’t of the equation.
Equation (13) represents a family of straight lines. The cther
factor in (12) combined with the given equation gives

x = — f'(p),

Y= — pf (0) + (), 14)
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a parametric form of anbther solution of the equation. This is a
singular solution. It is a curve for which the direction at any
point is p. Hence the equation of the tangent line at a point for
which p=c is

P* Y+ of (©) — f(e) = e[z + f/ (),
which reduces to y = cx 4+ f(c).

Hence the lines (13) are the tangent lines to the curve (14).
For example, consider

' y=pr+aVitp® (16)
The general solution is
y=cx+aVvVite? (16)
where ¢ is arbitrary. The second solution ig
VIt
a
V=T
Eliminating p, we have
z2 4 y?2 = a?, an

a circle to which the lines (16) are tangent.
CASE I_V. Equations solvable for x. Solving (1) for z, we have

one or more equations of the form .
x = ¢y, p). (18)
. . d
Differentiating with respect to y and placing d—: = %1 we have
1 ( dp>
- = y Oy 77 19
» VP (19)

If this can be solved for p, the elimination of p between (1) and
(19) gives the soluticn of (1).
As an example, consider

x—2p-log p=0. (20)
Solving for x and differentiating with respect to y, we have
P p/ dy
whence dy = (2 p+ 1)dp,

and y=p*+ P +c. (21)
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Since the result of eliminating p from (20) and (21) is compli-
cated, we take t=2p+logp,

y=pr"+p+e
as the parametric form of the equation (20). In (22) p may be
given any value, and z and ¥ may then be found. In this way the
curve may be sketched.

93. Envelope of a family of plane curves. In the previous sec-
tion we have met examples of a family of curves each of which is
tangent to the same curve. When that happens, the latter curve
. is said to be the envelope of the
family. Obviously, any curve is the
envelope of its tangent lines. Let

fx, y,¢)=0 1)
be a family of curves (Fig. 88),
and let C he a curve which is
tangent to each curve of the family
and such that each point of C is
a point of tangency of some curve
of (1). Then each point is deter-
mined by ¢ of (1), and therefore if
P(x, y) is such a point we have

T=¢i(c), y=¢2(c), (@
which is the parametric equation of the curve C. But the x and y
of (2) satisfy (1). Hence we have

(22)

Fia. 88

9fd~i fd —igj—edc 0. (3)

In this equation z and y are determmed by (2), and therefore Z——Z

is the slope of C. But the slope of (1), with ¢ constant, is given by
o+ 2y =0; @

and since C and (1) are tangent theu' slopes are the same, and
we have, by comparison of (3) and (4),

of
== 5
e 0. (5
Equations (1) and (5) together will determine x and y as func-
tions of ¢, as in (2). The elimination of ¢ between these equations

will give the equation of C in z and .
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Therefore we say, The envelope of a family of curves (1), if such
exists, 1s found by eliminating ¢ from equations (1) and (5).
For example, consider
(x—2¢)+y*=c?
a family of circles as shown in Fig. 89. The envelope is found
by eliminating ¢ from this
equation and /
—4(x—2c¢)=2c.

The result is

X
y=x7 FIG. 89

two straight lines to which each circle is tangent. The equation
of the envelope may also be written in the parametric form (2) as
3¢ V3

It does not follow from what has been said that a family of
curves necessarily has an envelope, nor that the elimination of
¢ between (1) and (5) may not give y
curves which are not envelopes.

For example, if we apply the method
to the family of parabolas (Fig. 90)

¥’ =cz,

C.

~

the equation 3—; =0 is =0, and the

eliminatioh of ¢ gives the point z =0,
¥ =0 and not a curve. The family has
no envelope except that in a certain
generalization the point O may be called
an envelope. Fic. 90
Again, consider the family (Fig. 91) o

N

(v — o) = —1).
0 .. T .
Here 5{ =0 is y — ¢ = 0, and the elimination of ¢ gives
r=0 and z=1.

A glance at the figure shows that z == 0 is an envelope, but the
line z = 1 is the locus of the double points and is not an envelope



ENVELOPE 231

o . .. of of
In fact, if there is a singular point for which —;—jg—: = 0 and ;—J =0
: )

on each curve of the family, the locus of that point will always
appear as part of the curve found by eliminating ¢ between (1)
and (5). For if there is a singular point on  y

each curve, the locus of the singular points is

r=yi(c), y=1y2().
Then, from (1),

o

d + d —I——dc~0

which reduces to ?f =0,

oc
so that the singular points satisfy equa-
tions (1) and (5) simultaneously.

Other extraneous factors may appear in Fia. 91
handling equations (1) and (5). Hence it
is necessary to test geometrically a solution found for an envelope
to see if it really is an envelope.

We shall prove in the next section the theorem that the enve-
lope is the limit of points of intersection of two neighboring
curves of the family.

94. Envelope as locus of limit points. Let

f@,y,¢)=0 (1)

be a family of plane curves, and let LK (Fig. 88, § 93) be a pur-
ticular curve of the family corresponding to a definite value of c.
Let ¢ be given an increment Ac. Then LK is displaced to a posi-
tion M N, the equation of which is

fx, ¥, c + Ac) = 0. (2)

The two curves LK and MN intersect in a point @, the coir-
dinates of which are found by solving equations (1) and (2) or,
what is the same thing, by solving equation (1) and

f(x’ Y, [ + AC) —f(xi Y, L') = 0. \/r%)
Ae

As Ac— 0, the curve MN approaches coincidence with the
curve LK, but the point @ will in general approach a definite
limiting point P on the -curve LK. We may call this point the

c
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limit point on the curve LK, and it may be found by solving the
two equations f@, y,¢) =0

of _ 4)
ac - ’ .
where the last equation is obtained by taking the limit of the
left-hand member of (3) as Ac — 0. The locus of the limit points
is the curve found by eliminating ¢ from equations (4). This is
the same locus found in § 93.

95. Singular solutions. The general solution of

f(x, 4, p) = (1)
is a family of curves' F(z,y, ¢) = _ 2

Any curve of the family (2) is such that the coordmates of any
point on it and the slope of the curve at that peint satisfy (1).
Hence if the family (2) has an envelope the equation of that
envelope is also a solution of (1), since the slope of the envelope
at any point is the same as the slope of some curve of (2) at the
same point. The equation of the envelope is called the singular
solutzon of (1), since it is not obtained by giving ¢ a speeial value
in (2). The first method of finding the singular sclution is, then,
to solve for (2) and then find the envelope of (2).

It is sometimes possible, however, to find the singular solution
of (1) without first finding (2). A glance at Fig. 88 shows that at
Q there are two values of p satisfying (1), but at P these two values
coincide. Hence the singular solution of (1) is the locus of points
for which two or more values of p in equation (1) coincide.

Now it is a well-known theorem of algebra that any multiple
root of the equation flz) =0

is also a root of f(x) = 0.
To prove this, note that if a is a mu'tiple root of f(x) = 0, then

f@) = (x —a)'¢(x);
whence @) =r(x—a) o) + (x— a)¢’(2),
and the theorem is obvious by inspection.

Applying this to f@z, 9, ) =0, 3)
we see that a double root of this equation is also a root of
o = 0. 4)
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If p is eliminated from these two equations, the result is the
locus of the points at which two curves of the family defined by
the differential equation coincide, and this is in general the
singular solution of (1). _

It should be noticed that either method of finding the singular
solution may lead to extraneous solutions, and any apparent solu-
tion should be tested by substitution in (1).

For example, consider the Clairaut equation

Y = px -+ a1+ p2. (5)
The general solution is the family of straight lines
y=cx-+aVitc ()
the envelope of which is the circle
22+ y? = a2 (N

On the other hand, (5) may be written as the quadratic equation
(@ —a®)p* —22yp + (> — @?) =0,
which gives two equal values of p when
22y — (@7 — a?)(y? —a?) = 0,
which reduces to (7). By trial (7) is seen to satisfy (5) and is
therefore the singular solu-
tion of (5.
96. Evolute and involute.
The evolute of a curve is the

envelope of its normals. Let
the equation of a curve C; be

y = f@), ey

and let P(c, b) (Fig. 92) be a
point on it. Then

The equation of the normal
at (c, b) is ‘ FiG. 92

(x—o), (2)

1
— fle) 2= — ——
y — f(c) 70

from a well-known formula of analytic geometry.
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This is a family of straight lines involving one parameter c. To
find the envelope we differentiate equation (2) with respect to c,

obtaining 7(¢)
—1©=F S @ =0+ ®)
and equations (2) and (3) give
T=c— ! +,[,f/(0)]2f'( )s
J'(e) @
o LI
y=fle) + 70

which are the parametric equations of the evolute Cs. Here (x, ¥)
are the coordinates of the point A corresponding to the point P.

L+ @,
THONS

The expression on the left of (5) is the square of the line M P,
and the expression on the right is the square of the radius of curva-
ture p of the curve (1) at the point (¢, b). Hence the point M is
the center of curvature of the point P, and therefore the evolute ‘of
a curve 18 the locus of the centers of curvature ofthe given curve.

We may write equations (4) in the form

From (4), (x—c¢)2+[y —f(e)]?2= ®)

of’(¢) P
r=c———"" y=flc)+——"75; (6)
1+ (013 L+ Lf ()2
whence dx = [1 —p O aJdc — o) > dp
1+ /() {L+[f ()12
O

11 + [f1 ()12

o O
and W*P@'EQW@RJM+

e ld
A+remE

= T ook dp,-
L+ P
and therefore da? + dy? = dp?;
whenee, if s is the length of the curve Cs,
ds = dp, p=s+¢ AT
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or the length of the line M P is equal to the length of the curve C.
measured from a proper origin, and therefore the curve Cy may be -
unwound from Cs.

We have started with a given curve C; and have obtained Cs.
Conversely, let us start with the curve C», lay off on the tangent
lines to C. distances equal to s, where s is the length of €, from
a fixed point, and find the locus of P. This locus is called the
involute.

The equation of the tangent line at M(z, y) is

i

d ;
Y—y=gg(X—x);

and since this passes through P(c, b),

dy y-—2»
der x—c¢ ®)
Also, by hypothesis,
(2= )2+ (g — b)? = 52 ©

Let M move on the curve Cz. Then (z, y) and (¢, &) both vary.
Hence, from (9),

{r —¢)dr + (y — b)dy — (x — c)dc -~ (y — b)db=s (_Zs. (10)

But ds® = da? + dy?
_y—b+ (’{— c)® dz?;
(x —¢)*
whence ds == S dx.
r—c

Also, from. (8),
. 2 B2 2
(x —e)de + (y — b)dy = =)+ Wb d = —— g,

xr—2C x—C

Hence equation (10) reduces to
(r—c¢)de + (y — b)db = 0;
whence, from (8), dedx + dbdy =0,
that is, the tangents to €. are the normals of C;. Then C. is ths
evolute of ;. Since the point from which we measure s in |Cq is

arbitrary, it follows that a curve has an infinite number of invo-
lutes but only one evolute.
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97. Orthogonal trajectories of plane curves. A curve which inter-
sects each curve of the family ‘

f@, 4,0)=0 ¢y

at a given angle is called a trajectory. In particular, if the given .
angle is a right angle the curve is an orthogonal trajectory.

To find the orthogonal trajectorics of (1) we must first find the
differential equation of the family (1). This is done by differen-
tiating (1) with respect to x and eliminating ¢ between the
result and (1). We then have

F(z,y, p) = 0. 2

Now since the trajectories intersect (1) at right angles, the p
of the trajectories is equal to minus the reciprocal of the p in
equation (2). Hence if we re- Y

1 . .
place pin (2) by — 5, obtaining
F(x Y, — 1)— 0, @3
) ’ p‘ b

we have the differential equa-
tion of the orthogonal tra-
jectories.

As an example, consider the family of circles

(& —c)? 4 y* = a?, 4)

where ¢ is an arbitrary constant and o is fixed (Fig. 93). The
differential equation of the family is

P*y? + y? = a. (%)

Therefore the differential equation of the orthogonal family is

Fic. 93

1
gV =0 (6)
Va2 — 942

whence ;};.——%—y—y—- dy = dx, )

{rom which we have the family of tractrices

[ N2 — y2
31-—C=:&:\/a2—y2"+"aloga———-———-——+ ;’ L

8)



THREE VARIABLES 231

It is evident that through any point of the plane between the
lines ¥ = 4 a there go two circles and two tractrices, since both
(5) and (6) are quadratic in p.
These curves must be properly
paired to show the orthogonal
relation. For instance, if we take

p=+—T"
y
from (5), we must take
Y
r= m FiG. 94

from (6). Plotting these together we have the configuration shown
in Fig. 94.

98. Differential equation of the first order in three variables.
Any equation of the form

fx,y,2,¢)=0, (1)
where ¢ is an arbitrary constant, satisfies a differential equation
of the form Pdr+Qdy+ Rdz=0, @)

where P, @, and R are functions of (z, ¥, z) but do not involve c.
For from (1) we have

f of of

S ot 5 dy 5 de=0, 3)

and the elimination of ¢ from 3) and (1) gives (2).
 This elimination may theoretically be carried out by solving
equation (1) for ¢ (§ 39), obtaining

d>(x Y, 2)=¢; (4

09 o¢
ad’r d+ad“‘0 5)

which must be the same equation as (2). Therefore either

o6 _ , o4 ¢

whence

iz =Y % ©
2 _ 9 _ 2 _ .
or ax—uP, ay—-l/«Q, az—#R- (7

In the first case equation (2) is exact; in the second case it has
an integrating factor u which makes it exact.
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We now ask, conversely, if an equation (2) always has a solu-
tion of the form (1) or, what is the same thing, of the form (4).
It is obvious from the foregoing that when this happens, P, @,
and B must satisfy either conditions (6) or conditions (7). Hence
we make three cases for equation (2).

CAsE 1. Ezxact equations. Equation (2) is exact if a function ¢
exists for which conditions (6) hold. The necessary and sufficient
canditions for this are (§ 36)

oP_i@ 0Q_7R OR_0P )
oy oxr oz oy ox o2

When these conditions are met, the function ¢ may be found

by § 86, and the solution is then
¢ =c.
The solution may also be found by the methoed to be outlined

in the next case.
The simplest case of an exact equation is that in which the

variables are separated and the equation takes the form
fi(@)dzx + f2(y)dy + f3(z)dz = 0.

Corditions (8) are obviously met, and the solution is

/ﬁmw+fﬂm@+jﬂ@ﬁ=a

Cask I1. Equations having integrating factors. If equation (2)
has an integrating factor u, conditions (7) must be satisfied, and

pPdr+ puyQdy + uRdz=0
is exact. Therefore we raust have

ouPy 3(#@)’ ouQ) _0(uR) O(uR) _0(uP)
dy ox 0z oy or 0z

)

Equations (9) may be written

’,

2 9_Q>_ op_ ,0m
(82;—895 -an—Pﬁy’
Q_omy_ ou_ i
(az 8y>—Ray—Qaz’

0Py ou o
M\@x 0z =P z—RE)x'
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Multiplying the first of these equations by R, the second by P,
and the third by @, and adding the resulting equations, we have
(since, of course, u # 0)

0Q OR OR 0P oP  9Q\
p(E_ DR g(R_0PY (00 2oy

0z oy oy oz,
which may be written in the symbolic form, easy to remember,
P Q@ R|
0 ¢ 0 )
A 11)
ox oy 0z L
P Q R!

This is, then, a necessary condition that must be satisfied in
order that (2) should have an integrating factor. We zhall prove
that the condition is also sufficient by outlining & method of solu-
tion which will work when (10) is satisfied.

Suppose, then, that the coefficients of (2) satisfy condition (10).
We will begin the solution of (2) by temporarily holding one of
the variables constant. Let us choose to hold z constant. We

have then Pde+Qdy=0
which will have a solution of the form
fz, 4, 2) =c.

But ¢ here means merely a constant as regards x and y. It
therefore may be a function of 2z, and we write

We wish to determine ¢ sc that (12) is a solution of (2). Irom
equation (12) we have

fedx + f, dy + (f; — ¢')dz = 0, (13)
and if (12) solves (2), equation (13) must be the zame as (2) except
for a factor. Therefore f.= AP,

fu=2Q, (14)
fo— ¢’ = \R.
The last equation in (14) may be written
fe— AR =¢’. (15)

If this equation contains on the left only z and ¢, it is a differen-
tial equation to determine ¢. Let us, then, solve (12) for ¥, thus,

y=F(z, z, ),
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and make the substitution in f, — AR, the first member of (15).
The necessary and sufficient condition that z should not appear
in the result is that [d( f,— X\ h‘)_] —0

dx z, ¢ ’
where the expression on the left means the partial derivative when
z and ¢ are constants. But by the laws of partial differentiation,

(16)

UM g \EE (R 2
[ . ] = A P R po (fz,, A % R P F.. (17)
. <dy
Now F, means =)
(ix/z, ¢
and, from (12), f-dzx+71,dy+ f,dz=d¢;
whence (§ 40) F,=— é
fu
P
or, by use of (14), F, = — a

We assume that @ # 0, for it is obvious from (9) that if Q =0
the equation (2) may be reduced to one which does not contain .
Hence we may place (17) in the form

dfi=MR)] e 9K _ ?E)- <§§ o\,
Ql ]z,¢~Qf" szu+)\(P 8?[ an "'R P "'"Qa”_)

dx y oy ‘
oP oA
But, from (14.), f,,, = A ",d—z- + P -6—;;;
oQ O\

fzy=>\5;+Q$’
IANP) (N,

oy ox
72N 298 _qg _qg)
whence P oy Fri A < o oy ’

and therefore

5] (25 -2

dx Jy oz 0z 0Ox
9 _ QE)] 18)
tR ( or  oy/ | (

Hence if condition (10) is satisfied, then equation (16) is satis-
fied, and equation (15) can be made an equation in ¢, ¢/, and z
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and can be solved for ¢. This solution involves an arbitrary
constant ¢. Then (12) is of the form

<I>(x, Y, %, C) =

which satisfies (2). If (10) is not satisfied, this method of solution
fails, as it should, since (10) is a necessary condition for the
solution of (2).

Condition (10) is obviously satisfied if the equation is exact.
Hence we may say:

The necessary and sufficient condition that the equation
Pdx+Qdy+ Rdz=0

may have a solutron of the form

f@, 9,20 =
. P
o (50 28) o 20) (o)
Geometrically we may say that the coefficients P, @, R deter-
mine a vector Pi+ Qj + Rk (19)
at each point of space, and the differentials dz, dy, dz determine
a vector dei+dyi+dek. (20)

The differential equation (2) asserts that these two veectors are
perpendicular to each other. Hence the vector (20) is restricted
to lie in a plane perpendicular to. (19). In other words, the dif-
ferential equation defines a plane of infinitesimal vectors (20) at
each point of space. The totality of these vectors forms what we
may call a planar element. The problem.of integration is to
arrange these planar elements into surfaces. This is possible only
when the condition in the theorem is satisfied.

As an example of the practical application of the method of
solution just outlined in theory, consider

yz? dx + (y%2 — 222)dy — y3 dz = 0. @n

The condition for integrability is satisfied. To integrate, it is
convenient to begin by holding y constant. We have then

z2dz- y3dz=0,

of which the solution is =« + — = ¢¥). (22)
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Diﬁerentiating (22) we have -

2y ) y?
dz+<z ¢’dy z2dz-—0. (23)
Dividing equation (21) by »2? ~.nd comparing with (23) gives
y_*_2y_ (24
z Yy z ¢ (24)
yz
But, from (22), x=¢ — =
and therefore (24) is — % = — ¢/,
do dy
or ———=0,
¢ v
which gives ¢ =cy.
Substituting this in (22) gives
L ¥
©+ . ¢y,
or z + y =,
y oz

as the solution of (21).
CASE II1. The nonintegrable case. If condition (10) is not satis-

fied, the equation has no integral of the form
f(x’ y’ Z’ c) = 0) -

and it is customary to say that the equation cannot be integrated.
There is here a striking difference between the equation

Mdzr+ Ndy=0

in two variables, which can always be integrated, and the similar.
equation in three or more variables.

Geometrically we may do something with the equation even in
the nonintegrable case. As we have seen, equation (2) asserts
that the direction dz :dy :dz is perpendicular to the direction
P:Q:R. To solve the equation is to determine geometric loci
so that the condition of perpendicularity is fulfilled for directions
on each locus. In the integrable case these loci consist of surfaces
which are perpendicular at each point to the direction P:Q : R.
Then any curve whatever drawn on the surface has this property
of perpendicularity at each of its points.
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In the nonintegrable case no such family of surfaces exists. We
may, however, upon any surface whatever find a family of curves
which has the property of being perpendicular to the direction
P:Q:R. Forif F(z,y,2) =0 (25)
is any arbitrarily assumed surface, then any direction on this
surface satisfies the equation

oF oF oF
— da + — d — dz = 0. 2
0x¢+()yy+azz 0 (26)
This equation taken simultaneously with (2) defines a family
of curves, as will be shown in the next section. These curves
necessarily lie on (25).
For example, consider

\ xyde+ydy+z2dz=0, 27
. which is nonintegrable. ‘
" Assume the sphere 22+ y? + 22 =a’
Then xdx+ydy+zdz=0. (28)
Taking (27) and (28) simuitaneously, we have
dx=20;
whence z=c.

Hence the circles cut from the sphere z2 4 y® + 22 = a? by the
planes z = ¢ satisfy (27) in a sense.
Again, still considering (27), assume the paraboloid
z = 2y. ' (29)
Then ydx +xdy —dz=0. (30)
If (27) and (80) are taken simultaneously, we find that
xy dx +y dy + xy(y de + 2 dy) = 0;
whence A4+y)V1I+22=c. (31)
The curves defined by (29) and (31) satisfy (27).
99. Simultaneous equations in three variables. Let there be given
two equations, Pidr+ Q dy+ Ry dz=0, )
Podz+Qedy + Radz= 0,

where Pi, Qi, Ri, P2, Q2, R: are functions of z, y, and z. These
equations may be written in the form

=22 @
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where P = Q1R2 — Qle, Q = R Py — RzPl, and R = P1Q2 - Ple.
Accordingly we shall consider equaticns in the form (2).

Since dx : dy : dz gives a direction in space, it seems graphically
evident that the solution of (2) consists of a family of curves.
Such a family is represented by two simultaneous equations of

the form filz, ¥, 2, 1) =0,
fz(xy Y 2, Cg) =0,

A proof will be given in the next section.
It is instructive to compare equations (2) with the equation

Pdx+Qdy+ Rdz=0, {4)

discussed in § 98, considering P, @, and R as the same in both
(2) and (4). Equations (2) define a family of curves which every-
where have the direction of the vector

. Pi+ Qj + Ek. b)
If equation (4) has a soluti~ ', it defines a family of surfaces
everywhere normal ‘to the vector (5) and hence normal to the
curves defined by (2). Now equations (2) always have a solution,
but equation (4) does not.

Hence if a family of curves is given, it is not always possible te
find a family of surfaces orthogonal to them. On the other hand
if a family of surfaces is given, P, @, R are determined and equa-
tions (2) may be solved. Hence a family of curves may always
be found orthogonal to a given family of surfaces.

Three methods of solution of equations (2) may be tried :

1. It may be possible to find two equations each of which con-
tains only two variables and their differentials. For example,

(3)

consider dr dy dz
— =t G)
Yy Y z
We readily find the two equations
d
9 _ gy, W%,
z Yy
the solutions of which are
Y =C12, x=Co6Y, )]

and equations (7) are the solutions of (6).

2. It may be possible to find readily one equation containing only
two variables and their differentials. The solution of this equation
may then be used to obtain another equation in two variables.
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For example, consider

dr d dz
xr Yy xyze
From the equation dz = dy
x Y
we find Y = 1. (9)

Taking the first and third fractions of (8) and using (9), we
have

dz
r=—;
, c1xz¢e
whence c1(x — 1)e” = log c2z. (10)

Then (10) and (9) taken simultaneously form the solution of (8).
We may, if we like, eliminate ¢; from (10) and write the solution

of (8) in the form ¥ =z,

(11)
y(x — 1)e® = x log coz.
3. By the theory of fractions we may write
flﬁ=ggi=d_z:k1dx+k2dy+k3dz, (12)

P Q R k1P 4 k2Q + k3R

where ki, k2, ks are any multipliers, not necessarily constants,
chosen at pleasure. In this way we may form new differential
equations which may possibly be solved.

Particular interest attaches to the case in which kj, ko, k3 can

be so taken that TP + k2@ + ksR = 0.
We then have the differential equation
kidrx +kedy + ks dz=0,
which may perhaps be solved as in § 98.
As a first example, consider

2= _ = 13

) d
We may write ——=

The equation —=

gives x =y — 2). (14>
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Using this in the equation

dy _ dz
x+y z+z2
we get log (y—z)=c2+m1{-_—5- - as)

Then (14) and (15) together form the solution of (13).
As a second example, consider

—_ —_—— . ‘ 16\
y+z —z ztytz (16
We have, in the first place,
de  dy dz _ dr — dy — dz )
y+2z —z z+yt+z ytz—(—2)—@+y+2’
whence dx —dy — dz =0,
and therefore xr—y—2=C. a7
Using (17) in the first fraction of (16), we have
gz _ dy
r—c —x
whence x+clog (x—c1) =ca—y, (18)
and (17) and (18) taken together form the solution of (16).
100. Existence proof. Given
dr dy dz
P Q@ R @
which are equivalent to
d
.d—y = Q=f1(x’ Y, 2),
z P @)
% _E w2 \
dz_p Y

We assume that both fi(z, y, 2) and fa(z, ¥, 2) can be expanded
into a power series in the neighborhood of (xo, %o, 20), and shall
take zo = 0, %0 == 0, 20 = 0. ~

d )
Then ﬁ =3 aix'y*e,
&z 3)
N ikl
&I —-Z b,“x Yz
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Assume two power series, :

Yy = 012 + a22? + azx3 4 - - -, (4)

z2=bix + bax? + b3 + - - -, (5)

and substitute in (3). It is easily seen that the unknown coeffi-

cients a; and b; are uniquely determined in terms of the known

coefficients a;x; and b;x;, and that each successive coefficient a; or

b; is expressed as a polynomial in the coefficients a;z;, b;z; and the
coefficients a; and b; already obtained.

The series (4) and (5) are thus obtained. It remains to prove

them convergent. For that purpose take a dominant function

M

E=30-50-

for each of the functions fi(x, y,2) and f2(x,y, 2). In (6), (a,b,¢)isa
point at which each of the series in (3) converges absolutely, and M
is a number which no coefficient in (3) can exceed. Consider then
the differential equations

6)

dy M
* <1 - 9(1 - 6>(1 - ;)
dz _ M (7)
de ~
(=203
If equations (7) are solved in power series
y= A+ An?+- -, (®)
2= Bsx + Box?%2 4 - - -, (9)

in the same manner as equations (3) were solved, the manner in
which these coefficients are found shows that
[As) >ail,  |Bi]>1bif,
and hence if (8) and (9) converge, so will (4) and (5).
Now (7) may be solved in an elementary manner. It is evident
that y = 2, and therefore ¢ = b, and we have only to solv:e

1__,_
a
’ T p_p33aM,  (y_ T\
whence y=">b b\j 5 log\l a> (10)

c
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This may be expanded into a convergent series which can be
none other than (8). The series (9) is the same, since z = y. Hence,
as shown above, the convergence of (4) and (5) is proved.

For convenience we have used (0, 0, 0) for (xo, %o, 20). Replacing
(z0, %o, 20), we may write (4) and (5) as

Y=o+ a(x — x0) + a2(x — 20)2 4 - - -,

11
2=120+ bi(x — 20) + b2(x — 20)2 -} - - -. a1

Here the coefficients yo, 20 are purely arbitrary, and the other
coefficients are determined by them and the coefficients of the
given equation.
~ We see, then, that equations (1) have solutions involving two
arbitrary constants. The most general form is to write these as

f(xy Y, % C1, 62) = 0’

(12) .
F(x, y, 2z, ¢1, ¢c2) = 0.

These solved for ¥ and z are equivalent to (8) and (9), and the
constants are determined if we know that for x = xy, ¥ becomes’
#o and z becomes 2.

The methods we have used are evidently extensible to the
equations de,  dis dz,

X X2 X,

and we say that these equations have solutions of the form

fi(xly L2y « + *y Lpy C1, C2, * * - cn) = 07

where there are (n — 1) functions f; involving n — 1 arbitrary
constants.

EXERCISES
Solve by one of the first seven methods of § 91:

1. tan x tan y dx + sec?y dy = 0.

2. 1+ 2H)yder+ (1 —y?>xdy=0.

8. xy(l + 2¥)dy — (1 — yHdxr = 0.

4. (x+y)dx + xdy = 0.

5. (y—Vx2+y2)d:v-—:vdy=0.

6. <a:siny+ycosz—/>d:c—:vcos—2{dy=0.
x x x

7. (x+2y—8)de+ 2xr—y— 1)dy = 0.

®

(z+yde+ (x+y+ 1dy = 0.
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9.dy + (y —cés x)dr =0

dy
13. (1 L) oA, 2 —=0.
10. 2 dy + ( — ze")dz = 0 ta) Ty tYi=0
11. 1 + :v:2)gz —zy=x(1 +x?. 14. 2%(1 + 2?) E’}{__ 3y =93
X

1+
= ydy:O.

12.2u9l;”—2y2=a;2+1. 151_yd +
. dx x3

16. (x — y)?dxr — (22 — 2 2y + 8 y?)dy = 0.
17. (x —{; v+ x"’y)d;c + (x + 2¥)dy = 0.

18. ye vdx — (ve ¥+ y2dy =0

19. (zy? + y)dx + (x2y — x)dy = 0.

20. (z° + y3)dr — xy?dy = 0.

Solve the following equations by series:

dy dy dy

21, = = 28. —= = xy. 25, — = g8 2,
dx v dx y dx vty
dy dy dy

22, — = kx. 24. = =1x + y% 26. = =y? — z.
ax dz y el

Solve the following equations by the methods of § 92:
27. xy(p? + i) — @+ y)p=0. 31.p +4zyp—8y2=0.

28. r%p? + axyp — 2 y% = 0. 82. 2%p® —p2 +1=0.
29. y(1 — p?) — 2 px = 0. 83. py? — 2 pry + pix? = 1.
80. y = 2 px — p%y. 34. (14+y?)p? — 2 xyp® + x*pt=1.

In Exercises 35-38 show that the differential equation of the curve
in each case is a Clairaut equation, and find the curve:

856. A curve such that each tangent makes intercepts on the coor-
dinate axis whose sum is k.

86. A curve in which the projection upon OY of the perpendicular
* from the origin to any tangent is k.

87. A curve in which the portion of the tangent between the coor-
dinate axes has the length k.

88. A curve such that the area between the tangent and the cob6r-
dinate axes is k2.

89. Find the envelope of the family of straight lines y = 2 cx + c*.

40. Find the envelope of the famlly of parabolas y? = c(x — c).

41. The semi-axes of the elhpse = + b_“’ =1 are such that ab = k2,
where k? is constant. Find the envelope of the family,
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42, Find the envelope of the straight lines y = ex — 2 ac — ac®.

43. Find the envelope of the family of circles having their centers on
the line ¥ = 2 r and tangent to the axis of y.

44, Find the envelope of the family of circles which have their centers
on the parabola y2 = 4 ax and pass through the vertex of the parabola.

45, If rays of light emanating from a fixed point in a plane are re-
flected from a curve, the envelope of the reflected rays is a caustic curve.
Show that the caustic curve of rays issuing from a point on a circle and
reflected by the circle is a cardioid.

46. Find the evolute of the parabola y* = 4 azx.

47. Show that the evolute of a tractrix is a catenary.

48. Show that the evolute of a cycloid is an equal ¢jcloid.
49. Find the evolute of an ellipse

(1) from the equatlon —+ 3-2— =1;
(2) from the equations T=acos ¢, y=>bsin ¢.
50. Find the evolute of the four-cusped hypocycloid x ='a cos? b,
y = a sin® ¢.
51. Find the orthogonal trajectories of the family of parabolas
y? =4 cu.
52. Find the orthogonal trajectories of the ellipses

@ a’te
¢ being the variable parameter.
53. Find the orthogonal trajectories of the confocal paraholas
y?=4cr+4c
54. Find the orthogonal trajectories of the family of ellipses in which
the minor axis is one half the major axis.

55. Find the orthogonal trajectories of the family of circles each of
which passes through the same fixed points.

56. F'ind the orthogonal trajectories of the family of circles each of
which is tangent to the same straight line at the same point.

57, If f< 9, %) = 0 is the equation of a family of curves in polar

codrdinal™s, prove that f (r, 4, —r? ‘_@) == ( is the equation of their
orthogonal trajectories. dr,

58 Find the orthogonal trajec torxes of the family of lemniscates

=2 c% cos 2 0.

59. Find the orthogonal trajectories uf the family of cardioids
r=c¢(cos 6+ 1).
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60. Find the orthogonal trajectories of the family of logarithmic
spirals r = e,

81. Find the singular solution of (x®> — a®)p? — 2 zyp — 22 = 0.

62. Find the singular solution of ¥y = — xp + z*p2.

63. Find the singular solution of a2 — y? = p%y2.

64. Find the singular solution of z°p? + z%yp + a® = 0.

65. Find the singular solution of p% — 4 xys + 8 y? = 0.

Solve the following equations:
66. y+z—b—c)dr+ (z+r—c—a)dy+ (x+y—a—0bdez=0,

67.(i———z—>dx+<l—-£>dy+(1—g>dz:—-0.
y x? 2 y? x 22

€8. (% + y2)dx + (2% + zx)dy + (y? — xy)dz = 0.
89. y22 dx + (y% — x2)dy — y3*(y + 2)dz = 0.
70. yz dxr — zx dy + (x® + y?)dz = 0.

Solve the fcllowing systems of simultaneous equations:

de dy dz dx dy dz
71— === 75, == .

yz zx xy 24+y? 2my (x—y)2
72.‘11::__@_:93. 8. dx =l dy — dz .

Y x4z ¥ Yy—2 22— T—Y
8. o TH .2 W

z x22+22 - =z T—Yy—2 Y—2—=x 2
74-“—"‘d'i—"‘=‘(‘iy'=dz. 78.-—2-—-—-9—:5———:&:—4?—.-

r+y—2 =2 22—y?—22 2ay 22a2

79. Show that if a differential equation is of the type
dy._  [ar+by+ec
dr <lx + my + n)
the variables may be separated. Consider two cases:
(1) am —bl£0; @) am — bl = 0.
80. Show that if a differential equation is of the type
y f(xy)dx + z g(xy)dy =0
the variables may be separated.
81. Show that x*m—1-ay*n—1-8 {5 an integrating factor for the equa-
tion xyf(my dx 4+ nx dy) + xvy®(pydx + qxdy) =0 if k is .properly
chosen, and determine the proper value of k. What happensifp=¢q=0?
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101. Existence proof. Consider the equation

d” _ dy d%y d""‘y)
f< Y @ de? ) @
This m:y be replaced by the group of equations
dy
dx = Y1,
dy
dx ¥
.. (2
dyn—2
dx = Yn-1,
dyn -1

=J&, ¥, ’ y "% ~1).
dx (&, 4, Y1, Y2 Yn-1)

By the previous section this group has a solution which for
x = xo reduces to ¥ = yo, ¥1 = (Y1)o, Y2= ¥2)o, - * *, Yn—1= Yn-1)o,
values which may be arbitrarily assigned. Hence in (1) the values

d___y dn—ly
Yde’ 7 dant
solved. This is expressed by saying that the general solution of (1)
involves n arbitrary constants.

The existence of the solution having thus been shown, let us
substitute in (1) the series

of y may be arbitrarily assigned and the equation

y=ax+ ax® +azx® + - -,
where xo and y, are assumed as zero.

Then y1=01+ 2 ax + 3 azx?+ - -
yz—2a2+6asx+12a4x2+

Yn-1= (0~ 1\' an-1+ n' An +
252
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All equations in (2) but the last are now satisfied, and the coeffi-
cients a; are obtained by substituting in the last equation in (2).
The series expansion may thus be practically obtained. n

Another method is as follows: Equation (1) gives us e in
y ... "y

) d . ..
terms of z, y, e By differentiating and substituting

dar +12/ dar +2y

we may find - in terms of the same variables.

dxn+1’ dxn+2’

. dy dy‘n—.] .
Assuming, then, 2o, %o, { = )7 — | at pleasure, we com-
dx: 0 dxn 0

dn n+1 .
pute ( y>, <u>, -+ and may then write down Taylor’s

dx™/o \dx"*1/o
expansion for y as a power series in « — Zo.
102. The linear differential equation. The equation

dn ar- 1 ar— 2
,,+p1 e 1+ P2 = 2+ +pn——l +PnZI—R (1)

where D1, P2, * * *, Pn, and R are functions of z, or constants, is a
linear differential equation of the wmth order. Equation (1) in
which R + 0 is called the complete equation in distinction to the
equation dn dr=ly

+ dnl

which is called the reduced equation. The solution of (1) is closely
connected with the solution of (2). This will be brought out in
the theorems which we shall now prove:

dy _ ;
+ | o + oy =0, (2)

L If y1, ys, - - -, Yn are m lLinearly independent solutions of the
reduced equation (2), the general solution of the reduced equation is
y=ocyr+cy2+ - -+ Calm (3)

That (3) solves (2) is evident from direct substitution; that it
is the general solution follows from the faet that it contains »
arbitrary constants under the hypothesis that the functions y; are
linearly independent.

The necessity of this hypothesis is seen from an example.
Consider a cubic equation

ddy d?%y
e TP dx2+qd +ry=0, (4)

and let yi, y2, ys be three solutions. Then
Y = C1th + C2y2 + C3ys (6)
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is also a solution and will be the general solution if %, ¥2, ¥3 are
linearly independent. But if, for example,

ys = ay1 + bye,

then (5) becomes y = (1 4 a)y1 + (c2 + b)ye,
which involves only two arbitrary constants, namely, C, =c¢; + @
and Cz = ¢2 + a, and is therefore not the general solution.

II. If I, and I are any two particular solutions of (1), they
differ by terms of the form

G+ Cay2+ - - -+ Calymy

where Y1, Yz, - - -, Ya are solutions of (2).

To prove this, note that by hypothesis

L drn d I an,
dx™ + ¥4 dem 1 + .- +pn—1 dx +pnII = R;

d*Is dn_112 dls
dx™ -+ ?)1 dx™ 1 + - '+pn-—-1 dx +pn12—R’

whence by subtraction I, — I, satisfies equaﬁon (2), and therefore,

h ,
by thearem I IL—Is=cyr+ c2yz2+ - -+ Calyns

as was to be proved.
III. The general solutron of (1) 7s of the form
’ y=cyr+cyzs+-- -+ cayn+ 1, (6)

where ciy1 + c2y2 + - - - + CaYn 18 the general solution of (2), and I
s any particular tntegral of (1).

This is an immediate consequence of II. It may also be shown
by direct substitution in (1) that (6) satisfies (1). That it is the
general solution follows from the fact that it contains n arbitrary
constants.

In the solution (6) the quantity I is called the particular integral,
and the part involving the arbitrary constants is called the com-
Dlementary function.

These theorems give certain general facts of importance regard-
ing the solutions of (1) and (2), and use will be made of them in
the subsequent sections. We may &t times find use for the follow-
ing theorem :

IV. If ome solution of the reduced equaiion is known, the order of
that equation may be lowered by unity.
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Let y: be a solution of the reduced equation (2) and substitute
Y =Wne.

It is not difficult to see that the coefficient of z in the new equa-
tion is the same as the left-hand member of (2), with y replaced
by y1, and therefore vanishes, since y; is a solution of (2). The
new equation is then of the form

d" dr—1z d?z dz

g Ty _1+ '+11n—2('i';5+11n—1a;=0. )
If we now place g:—: = u, we have a linear differential equation of
the (n — 1)st order,
dr dr—2u

du
) da.n~~l+q1d n~2_'_”'+Qﬂ,——2d.'—;+qn—~lu=or (8)
which proves the proposition. Y2
If y2 is another known solution of (2), then z = *=is a solution

1
of (7), and Zi% (;) is a solution of (8). Hence the degree of equa-
1

tion (8) may be reduced by unity. Proceeding in this way we
have the following theorem :

V. If m solutions of the reduced equation are known, the solution
of that equation may be reduced to the solution of an equation of
degree m — m.

103. Method of variation of constants. We shall in this section
present a method by which if the solution of the reduced equation
is known that of the complete equation may be found. For
simplicity of treatment we will take an equation of the third order,

d3y d?y .

T TP dx2+qd +ry=R, 1)
and suppose that we have found the solution of

d3y d%y

o +P Y+ Q o L ry=0 (2)
in the form ¥ = ¢y + c2y2 + cays. ) (3)

In (8) ¢4, c2, and c3 are constants and (2) is satisfied. The ques-
tion now is, May we not replace ¢, ¢z, ¢z by functions of z in such
a way that (1) is satisfied? We will therefore consider the e,
as variables. ¥'ur this reason the method is called that of the
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variation of constants, though it might more properly be called
the replacement of constants by variables.
If we take c; as funetions of x, we find from (3) that

dy d d (
E% 2/1+ C2 :+03'£§+C1'y1+62'y2+031y3: @)
here o =%, eyt s
w V5 P T de P T dw

Since there are three functions ¢; to be determined, we may im-
pose three conditions upon them. We take the first to be

c'yr+ c2'yz + c3'yz3 = 0. (5)
Then (4) becomes
b e O 6
. + c2 gz T g (6)
Differentiating again, g
dry _ d2y1 d“’yz d2y3 Jdys | dys | dys
i +02 s T4 o x+62 dx+63 dr (7
We ta.ke dyl + 2 @ + 63’ % =0 (8)
dx dx

as the second condltlon to be imposed upon the ¢’s. We thus
reduce equation (7) to the form

d% d2y1 d21/2 d?ys

. dxz + C2 + 3 dx? ; (9)
whence
d3y dayl d3y2 d3ys d?y, , d? 1/2 ,d%y3
T Uge T g e ta gt oot oo (10)
Substituting (3), (6), (9), and (10) in (1), we have
d y1 d 7/2 , d%y3
gt 5 +¢s T (11)

Equations (5),’"‘ (8), (11) are now three linear equations which
may be solved by elementary algebra for ci’, ¢z, ¢3’. Then, by

integration, o, — ¢,(z), 2= ¢2(z), €3 = pa().
Hence I = $1(x)ys + ¢2(x)y2 + P3(2)ys
is a solution of (1). Therefore the general solution is, by III, § 102,

y=[er + @)y + [z + @2(2)]y2 + [ea + Pa(@)]ys.  (12)
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104. The linear differential equation with constant coefficients.
In this section we shall consider the equation

d™y dr 1y dy

'—‘+ 1d,,1+ -%'an-.ldx

where the coefficients a; are constants. It is convenient to express

% by Dy, Z 5 by D%, Z — by D"y, and to write (1) in the

form — pry b @D g+ - - 00 1Dy + aay = f@),
or, more compactly,
(D" 4+ D" 4o a1 D+ an)y = f(2). {2)

The expression in parenthesis preceding % in (2) is called an
operator, and we are said to operate on a quantity with it when we
carry out the indicated operations of differentiation, multiplica-
tion, and addition. The solution of (2) is expressed by the symbol

1
D"+ D" ' 4t an 1D+ a,

where the expression on the right is not to be considered as a
fraction, but merely as the inverse operator to that denoted by
the operator in (2).

Let us now treat the operator as if it were an algebraic poly-
nomial in which D is a quantity instead of a symbol of ditferentiu-
tion, and split it up into linear factors, writing the left-hand
member of (2) as

(D—=r)(D—rg) -+« (D~ 7r0_1)(D —ra)y. (4}

+ any = f(z), 1)

V= f(@), (3)

If we consider that (4) means to operate first on y with D — 7,
on the result obtained with D — r,_;, on that result with D —r,_,,
and so on, we assert that (4) is exactly equivalent to the opera-
tion on the left-hand side of (2). This follows from the fact that
D considered as an operator obeys the same laws as when it is
considered as an algebraic quantity. The student may verify this
by considering (D — 1) (D — ra)y.

This is first of all equivalent to

D — Dy — ,
and this to ( r) (DY = ray)

D(Dy — ray) — ni(Dy —ray) = [D? — (r1 + r2) D + rir2]y.
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Similarly,
(D~ 11)(D —1r3)(D —r3)y
== (D — 1)[D* — (r2 -+ 13) B + rorsly
= [D® — (r1 4 r2 + r3) D* + (ri7re + rors + rsr1) D — rirarsly,
and so on. )
A study of these results and the similar ones to be obtained

with more factors shows that the order of the factors is immaterial.
We have, then, reduced equation (1) to the form

(D—=r)(D—=12) -+ (D—71,1)(D—12)y = (). ()]
The simplest equation of the form (1) or (5) occurs when
n = 1, and we have (D — )y = f(z), (6)
the solution of which is, by Case IV, § 91,
y=e"* f e~ f(x)de + cre™*. @)
We have, accordingly, the formula
— / \i . "z —_T iy .
S fw = 0 [ o= peis, ®)

where the constant of integration. may be supplied or not in evalu-
ating the integral. If the constant is used, (8) gives the general
solution ; if the constant is not used, we have a particular integral.

Returning to equation (5), it is clear that we have in succession

1
(D= 72)(D=13) -+ (D — 1)y r'ﬁ“f:;;f(x)

— eﬂz‘fe'— T!Zf(x)dx’

1
o [e"’fe“""f(x)dx]

- ena.feﬂr. ---4r~;‘zfe-—n:cf(x)d,y,2
oy
and so on. Hence, finaily,

g?-:‘e’nl [e(r,..-r—n.)xf. . _fe(n—rg)xfe_,-l;f(x)dxn_ (9)

Equation (9) furnishes a general formula for the solution of
equation (1) or {(B). As each integration is performed, a constant
of integration may be introduced so that the solution contains n

(D—r13)- (D—r)y=
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arbitrary constants and is therefore the general solution, or the
constants may be omitted and supplied at the end by theorem 111,
§ 102.
~ The formula, however, is frequently tedious in its application,
and we shall present in the next sections more convenient meth--
ods of solution for the cases most often arising in practice.
105. The complementary function. All the theorems of § 102 hold
for the linear differential equation with constant coefficients. We
shall therefore concern ourselves first with the reduced equation

(D—=nr)D—r2) - (D—1)y=0. (1)
Since the left-hand member of (1) is independent of the order

of the factors, we may write any factor D — 7, in the place next
to the Y. Then if (D _ Tk)?/ =0 (2)

equation (1) is satisfied, since all the operations on zero give
zero. A solution of (2) is accordingly

Y = cke’¥, 3)
where c;, is an arbitrary constant. Giving k all values from 1 to
n, we have Y= C1e™% i coe™F 4 -+ - + ce™7, (4)

If all the »’s are distinet, this will be the general solution of (1)
by theorem I, §102. If, however, some of the r’s are equal, the
expression (4), although a solution of (1), will not be the general
solution, since it will not contain n arbitrary constants. Suppose,
for example, that the first ¥ values of r are equal. Then the first
k terms of (4) are (¢1 -+ c2+ - - -+ cx)e™®, which is equivalent
simply to Ce™*.

In this case equation (1) may be written

(D—=r1ks1) -+ (D=1 )(D =)y =0,
and any solution of (D—=r)y=0 (5)

is a solution of (1). The solution of (5) may be found by the general
formula (9) of §104. We have

yme [ foar

= (,CI +cox 4 - - - - C/cxk_l)e"lx’ . (6)

which now repluaces the first k terms of (4).
Formula (4) with its modification (6) is perfectly general irre-
spective of the nature of the quantities r;. If the coefficients of (1)
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arereal, then, by a well-known theorem of algebra, all imaginary
values of r; will appear in pairs as conjugate imaginary. The cor-
responding terms in (4) or (6) may then be modified so as to appear
in a real form. Suppose, for clearness, that

71=)\+M’£, 7‘2=)\—-M7:,
where \ and u are real quantities and 1 =V— 1.
We then have
cler,z + czer,:c = eAx(cleuiz + cz—;uia:)
= ¢""[(c1 + ¢2) cos ux + i(cy — c2) sin ],
the last transformation being made by § 26.
Let us now place

&+ c2=C, 2(c1 — ¢2) = Coq,
and we have

c1e® + c2e™ = €"*(C; cos ux + C2 sin ux). ™

Similarly, if the factor D — (A + u4) occurs k times, so does the
factor D — (A — uz), and we have, from (6),

e (er + oo+ - - -+ et e € (e + ez A -+ e'zE e,
which is equivalent to
e’[(Cy+ Cax+ - - - + Cxx* 1) cos px + (B1 + Bax + - -«
+ Bpx*~1) sin ux]. (8)
106. The particular integral. Consider now the complete equation
(D*+ ayD* '+ - - - 4 @1 D + an)y = f(2). ey

The complementary function is to be found as in §105. The
particular integral may be found by the method of variation of
constants or by applying formula (9), § 104, omitting the con-
stants of integration. Such methods are frequently tedious. A
more convenient way is to assume the form which the particulai
integral will take, using undetermined coefficients, which are then
determined by substituting in the equation. The form of the solu-
. tion may be inferred by studying the results obtained by (9), § 104,
for different functions f(x). There result in certain common cases
the following rules, in which we denote the differential equation by

P(D)y = f(z),

where P(D) is a polynomial in D, and denote the particular integral
by I.
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L If f(x) = apx™ 4+ a1x™ "1 4+ - - - 4 ap 12 + a,, assume, in general,
1= Az"+ Alx"'l+ e+ A1+ Ang
but +f D™ 43 a factor of P(D), assume
I=am(Az"+ A" 14 .- -+ A, 12+ A,).
II. If f(x) = ce*®, assume, in general,

I = Ae®*;
but if (D — a)™ is a factor of P(D), assume
I = Ax™e®*,

III. If f(x) = ¢ 8in ax or ¢ cos ax, assume, in general,
I= A sin ax+ B cos ax;
but +f (D? + a*)™ 1s a factor of P(D), assume
I =2"(A stn ax + B cos ax).
IV. If f(x) = e** ¢ (), place y = e**z and divide out e°*.

V. If f(x) 1s the sum of a number of functions, take I as the sum
of the particular integrals corresponding to each of the functions.

Example 1. (i—+~——— 6y = e*®,

dx?*  dx
This may be written (D + 3)(D — 2)y = et=.
The complementary function is ¢;6%% + c,¢ 3%, To find the particular
integral we place I = Aets
and substitute in the equation. We obtain
14 Ae** = et%;
whence A=
Therefore the general solution is
' Y = 177 - c26~ 3% + P4 et”.
d® %y .
Example 2. a——% g—z-i =gin 2 z.
This-may be written D?(D + 1)y = sin 2 z.

The complementary function is therefore ¢; + ¢2x + cse~%. To find
the particular integral we place -

I=A4As8sin2x+ Bcos2x
and substitute in the equation. We obtain
BB—4A)sin2x— (4B+84)cos2x=sin2z,
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To satisfy the equation we must have
8B—-44=1, 4B+8A=0;

— 1 __ 1
whence B =5y, A= — 3.
Therefore the general solution is
y=c1+ x4+ cze* — 5 sin 22+ {5 cos 2 x.

d%y .
-— 4y =sin x.
dx? Y
Thiz may be written (D? + 1)y = sin x.
By III, we write I = Ax sin x 4+ Bx cos z and substitute in the equa-
tion. There results

—2Bsinx+2 A cos xr =sin z.
Therefore B=-—14, A=0.

Example 8.

The general solution is

B . T . T
y:cle”‘+02e"“‘—§cosx=C1 cos ¥ + C; sin x—écos x.

107. Equations reducible to linear equations with constant co-
efficients. Consider the equation

dn n—1

d
e a.n-lxgg+ any =f@), ()

where a1, ag, -+, @n-1, @, are constants. This equation has the
peculiarity that each derivative is multiplied by a power of x
equal to the order of the derivative. It can be reduced to a linear
equation with constant coefficients by placing

r=e
dy dydz __ dy
Then dx dz dx dz’
d? = @\’ d/dz ¢ a2 &’
d ﬂ—i(e—zzgz_y_e"zz@>%
dz®  dz dz? dz/ dx
d’y d%y dy
— =322 ~3z 7 9 —3z J
=e 7 3e d22+2e 70

and so on.



SIMULTANEOUS EQUATIGNS

d
Hence T E—g = Dy,
d? .
12 E.’fg = (Dz - D)y’
3,
8 g;%—_- (D® — 3 D? +2 D)y,

d
and so on, where D = —-
dz

For example, the equation

d’y d%y dy
3L 5222 18y 2 =2
P T g terg, =
becomes (D® + 2 DY)y = ¢27;
whence Y =1 + 2z + cze™ 2% 4 {5 €72

- ca 1 o
—c1+czlogx+x2+16x.,

263

108. Simultaneous linear differential equations with constant
coefficients. The operators of the previous sections may be em-
ployed in solving a system of two or more linear differential equa-

~tions with constant coefficients when the equations involve only
one independent variable and a number of dependent variables
equal to the number of the equations. The method by which

this may be done can best be explained by an example.

. de dy T
Consider o + 7 ¢ 4y = e,
de dy 0. 2t
dt+dt_ To8y=2n

These equations may be written
(D—1z+ (D—4)y =",
(D — 2)x 4+ (1) — 3)y = =",

(1)

(23

We may now elimninate y from the equations in a maaner anal-
ogous to that used in solving two algebraic equations. We first
operate on (1) with D -- 3, the coeflicient of -y i (2), and have

(D? =4 D3 + (I —T D+ 12y =2¢",

<

)
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since (D — 8)e5' =5 % — 3 €% = 2 ¢!, We then operate on equa-
tion (2) with D — 4, the coefficient of y in (1), and have

([)2—6D-{-8).’c+(D2—7D+12)y=—222‘, 4)
since (D — 4)e*' = — 2 ¢?!. By subtracting (4) from (8) we have
(2D — 5)x = 2% 4+ 2 ¢%, 5)

the solution of which is
T =6t + % et — 2 62", (6)

Similarly, by operating on (1) with D —2 and on (2) with
D — 1, and subtracting the result of the first operation from that
of the second, we have

(2D —5y=—38e"+e*, Q)

the solution of which is
5¢t

Y= coeh — 35t — e, (8)

The constants in (6) and (8) are, however, not independent, for
if the values of x and y given in (6) and (8) are substituted in the
original equations (1) and (2), they must reduce the latter equa-
tions to identities. Making these substitutions, we have

_g_(cl . 62\)65}t + edt — e5‘,
and $er — co)ed! 4 o2t = o2
whence it is evident that ¢z = ¢;. Therefore we have
T =cett + %S — 22,
= ceyt % eﬁt t’
as the solutions of the given equations.

109. Equations of the second order. Equations of the second
order are of special importance in applications. It is of interest,
therefore, to sketch methods by which such equations can some-
times be solved.

In the first place, it is sometimes possible to reduce such an
equation to one of the first order by placing

dy

a;“? 1)
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We may then pace either

d?y d .
Y=2, @)
dr® dx
_ . dp dpdy
or, since &= dyds’
d’y __dp ‘
dz®~ Py’ @)
It is clear that if the given equation is of the type
. dy d’y >
(4

that is, if it does not contain y explicitly, then the substitutions

%, whereas if the given

dy d* .
(v 2.2, )

that is, if it does not contain z explicitly, substitutions (1) and

(1) and (2) give an equation in x and
equation is of the type

. .. d . .
(3) give an equation in y and ?ig . If pis found in either case, equa-

tion (1) then gives an equation of the first order to determine .
As a particular example consider the case of a particle so moving
in a straight line that the force ac¢ting on it is a function of the
displacement from a fixed origin. Then if s is the distance from
the origin, and ¢ is time, the differential equation of the motion is

g—f = f(8).
Placing % =P, g;; =P %.
we have pdp = f(s)ds;
whence pP=2 f f(s)ds + ¢,
and, finally, =1+ ca.

ds
f 2 [S(s)ds +

In carrying out this solution it will usually be desirable or even
necessary to determine the constant ¢; before integrating.
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When the differential equation of the second order is of the
linear type, other methods may be applicable. Consider the
equation , &2y + . d

dx? dx

where P, @, and R are independent of y. We shall enumerate cases
where the solution is possible.

Casg I. If P and @ are constants, the equation is to be solved
by the methods of §§102--106.

CasE II. If P and @ are not constants, the equation is possibly

of the type discussed in §107.
Case III. It is possible that the left-hand member of (6) may

% qy=-r, ®)

dpP
be an exact differential. This happens when @ = e and then
cquation (6) may be written

d /dy
dx( +Py> E;
whence —-—+Py —fR ax + ci.

This is the linear type of Case IV, § 91.

Case IV. It is sometimes true that a solution of the reduced
equation
A @

dx?
is known or may be found by inspection. Let y = y;(z) be such
a solution, and substitute

::ylz
in (6). We have d2z A
o G dz _
w2 rn)Eor ®)
which is of the type to which substitutions (1) and (2) are

applicable. ,

CASE V. Occasionally two solutions of the reduced equa-
tion (7) are known or can be found by inspection.

In that tase, if y = y; and ¥ = ys are the two known solutions
of (7), then
y=cyr+cayz+ I
is the general solution of (6), and I may sometimes be found by
the method of variation of constants or otherwise.
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Case VI. We may try placing

in (6). There results y=u
dz  [d%
w L (2% pu) 2 (4 ThrPtu)=R

If u can be so chosen that the coefficient of z vanishes, we have

again equation (8), already discussed. Otherwise let us take u so
. dz . .

that the coefficient of — shall vanish ; that is, we take

dx )
—3 | Pdx
w=e 2 P

Then, after a few reductions, equation (9) becomes

d* ( ar 1 L 5P 4
a2 TA% _Zd:r,“'élI) = Re ’ (10)
. 14dP 1
Therefore, if @ -5 (&; -— &-PQ is equal to a constant, equation
) = 1dpP 2
(10) is of the type of §104; if Q@ — = Pl % P2 = L,—» where
Z ) i

k? is a constant, equation (10) is of the type of § 107.
Case VII. Finally we may try the effect of changing the in-
dependent variables from x to ¢, where ¢ is a function of 2 to be

determined.
S dy _dy di_dy
en dedt dr U ar

d’ 4% ., dy

and the differential equation (6) becomes
d2g "+ Pt dy , Q , R
dt? 2 a TRV T

We wish to choose ¢ s¢ that (11) is of the type of §104. We
accordingly choose { so that

113

12 = ke,
where ¥ may be - 1 or any other conveniently chosen eonstant.
L4 P . .
Then if ———;‘—,;——— becomes a constant, the desired rvesult is

obtained. We may :ulse endeavor o reduce (11) to the Lype of
§107, but nothing new is thus obtained.
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It should be said that all these methods of solving a differential
equation are likely to fail with equations which occur in practice.
In sugch cases recourse may be had to a series expansion. The
differential equation, or the series arising from it, then often
defines a new function, which must be studied. We shall illustrate
this method in the next section and study the Bessel functions
from this standpoint in the next chapter.

110. Legendre’s equation. Consider the equation

g hat 4 —
1—2% T2 2x Iz + nrn+1)y=0, @
where 7 is a constant. To solve it we shall assume the series

y=aoxm+alxm+l+a2xm+2+... (2)

and endeavor to determine the first exponenf, m and the coeffi-

cients a;'so as to satisfy (1).

. dy d’y .
Computing - and —; from (2) and forming the terms of (1),

2
we have , dz dz

7oz = m(m — 1)aez™ % + (m + Lymayz™ !
+ (m+2)(m + 1)az2™ + - - -,

2,
—ng-;g: —m(m — 1)apx™ — - - -,
3)
—2x@= —2%3}"‘—....
dx ’
n(n+ 1y = n(n + Dagxt™ + - - -

The sum of these terms must be identically zero if (1) is to be
satisfied. Hence we must have, in the first place,

m(m — 1)ap = 0, 4)
| “(m + Hymay = 0, )
(m + 2)(m + L)az = (m ~ n)(m + n + 1)ao = 0. (6)

Equation (4) gives either m = 0 or m = 1, with ao arbitrary in
either case. Let us take the first case, m = 0. Then from (5) a
is arbitrary, and from (6) .

_ n(n+1)

5 % ¢

Ao =

Subsequent coefficients may be obtained by taking more terms
of the series (3), but it will be better to obtain the general law of
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the coefficients. To do this we will find the term containing 2™+"~2

in each of the series (3), this term being chosen because it contains
2

. - . d
a, in the expansion of oy, We have

dx?

d2y { m+r—2

{2:;2': ""!‘(/”L'f'r)(m“{"r"'l)arx + - s

2 4% -2
-z dx2:~~~——(m+'r-—2)(m+'r~3)a,_2:r"‘” — e
—-2*éy= cee—2m AT —2)a,_xm T~

wdx g r—2 ’
nn+ 1y = s Da,gamtTT2 4

and since the sum of these terms must vanish, we have, after com-
bining and factoring the coefficients of a, o,

(m-rwm-t-r—-Da,+m—m—r+2Yn+m+r—1a,.2=0.
We are considering the case in which m = 0, so that we have

 (n—=r4+2)n+4r—1)
a, = Tt a2 (®)
which enables us to determine any coefficient from the one which
precedes it by two terms. We have, accordingly,

. aﬁ<1 RS\ LIRS R )
+(n_1)(n-—~3)5(!’n+2)(n+4) xs_...), )

It is easily shown by the ratio test that each of these series
converges in the interval (— 1, + 1).

Since ao and a; are arbitrary, this is the general solution of (1)
by theorem I, § 102. The student may verify the fact that if he
considers the assumption m = 1, discarded in solving (4), he gets
nothing new, but only the second series in (9). .

By taking either ap or a; equal to zero, solution (9) becomes a
single series, and particular interest attaches to the cases in which
this series reduces to a polynomial. This evidently happens to the
first series when » is an even integer and to the second series when
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n is an odd integer. By giving to the coefticient ao or a;, as
the case may be, such a numerical value that the polynomial
becomes equal to unity when z is unity, we obtain the following

system of polynomials:
P()(‘x) = 1,
P] (x) =X,
Pz(ill) == % .’132 - %}

P3(IE)=%$3“%I,

7-5 5.3 3.1

Pa@) =15 =257t 1y
7-5 , 5-3

Po@) = 5@’ =25+ p®

These are called the Legendre polynomials. Each satisfies a
Legendre differential equation in which » has the value indicated
by the subsecript.

The Legendre polynomial P,(x) is the coefficient of A" in the

expansion of b =(1—2zh+ h2)“’}f (10)

in ascending powers of k. The student may easily verify this for
the lower values of n by actually expanding (10) by the binomial
theorem. To prove it for the general term, we first form the fol-
lowing identities by differentiating (10) :

(A—2ha+ 1) S = @—hyg, 1)

o6 _ ., 09 12)

h & =@ k) T (12)

Now place ¢ = S: ALh". : (13)
n=0

It is obvious that A, is a polynomial in x of degree n. Also, if

» and therefore A4, in (13) is equal

z=1in (10), then ¢ =

to 1 when z = 1. Hence if we can show that 4, satisfies Legendre’s
equation, it will be identified with P,(x), since our solution of
Legendre’s equation has given us the only polynomials which
“satisfy that equation and have the value 1 when z = 1.
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Substitute from (13) in (11) and (.12) and equate coefﬁciénts of
k™! on both sides of the resulting equations. We get

nAn— 2n—DrA, 1+ (n—1)4,-2=0, (14)
dAn__.l dAn—Z .
S T T ar & (mn—1)A,_:. (15)

Replacing » by n + 1 in (15), we have the equivalent formula,

dA, dA,
x iz dr =nA,. . (16)

. . .. . e . dAL
By differentiating (14) with respect to x and eliminating e
by (15), we have *
dA, dA,-1

e nA,-1. . amn
Then if (16) is multiplied by — x and added to (17), we have
dA,
1- x2) 'E'x— =n(d,_1 —TA,). (18)

By differentiating (18) with respect to x and simplifying the
result by means of (16), we have, finally,

2
1 —2% ddf;" -2z d;l" +nn+1)A, =0. (19

This shows that A4, is a solution of Legendre’s equation. Hence
for the reasons already stated A,(x) is the same as P,(x). For-
mulas (14) to (18) may be rewritten, replacing A, by P,, and give
important relations connecting Legendre polynomials with dif-
ferent indices.

Another class of polynomials related to the Legendre poly-
nomials may be found as follows:

. Differentiate equation (1) m times with respect to x and place
am .
.a—x% = 9. We obtain

(1-—-x2)d—211—2x(m+1)£l2+(n—m)(n+m+1)v=0 20)
dx? dx ’

an equation which is satisfied by

p = T Pa(@) (21)
dx™
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n
2

In (20) place w=1(1—2%)2. We get

1 2) —— 22 v | [n(w 4+ 1) — —ﬁfvjw =0 (22)
d-= dx"’ de LT I

This equation, which differs from Legendre’s equation in an
added term involving m, is called the associated Legendre equa-
tion. It is satisfied by I

™
w=(1—x2)?2 e Po(x). (23)

This value of w is the associated Legendre polynomial and is
denoted by P,"(x). If m > n, P,"(z) = 0.

EXERCISES

.1, As;;urning that the solution of % +y=0isy=c sin x4+ ¢, cos z,
find by the method of variation of constants the solution of gi% +y=tanz.
2. Assuming that the solution of Z-:}/— +y=0isy=o¢, <in2x + ¢z cos 2,
find by the method of variation of constants the solution of g——-+ y=secz.

2
3. Assuming that the solution of 3——2 -2 gg +y=0isy={(c + c2x)€%,
x
find by the method of variation of constants the solution of
d%y dy &
cd_o¥ = .
dx? dx ty 1—z
4. Assuming that the solution of (1 — ) + :z:gﬁ —y=0is

Y =X 4 c€%,

find by the method of variation of constants the solution of

Solve the following equations:

dy dy _ d?y dy =z =z
d2+2d——8y—-4cos2x. 8.—?:—2-1— —d—+y-—e + b e?=,
dy dy d’y 0%y
3—~—-10y =5. . 3y=2zx2
Sz tig 10 a  Cgp TivET AL
2,
dy+2~——=3x 2+ 1. lo.é—ii-f- dy+9y-e“sm2x.

d:r“ dx dax? dz;
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ll.d2 st 9y=cos3z. _ 20. 2%?+a—3x—e
12.32y2 3:+y 2+é Zj+‘;§+2y=cos2t.
.13-3;11'*'3% 3. 21.%—%:@
14.333+y—cosx ‘fz;f Zi’-l—Zx—y—ti’
15.‘;? 4‘;xy+4d #0774 1, 22.3%63%-%21:0.
16. x %—6x—+6y=x"’. 23,1%-2%:0.
17. x in+2x%l-—-6y—xlogx. 24.(a——x)%= 1+(%>20
18. 2 3‘;+3 :+x%=xz. 25. (¥ + )9——2- <%)2=0.
19.%+‘Z+ =0, 26.y%+2<%)2+%—0
W _2ar3y=0. 27.%+2y%=0.
28'ydi;;=<%>2+ 1.
29.1:2%-—29:324-(2+4x"’)y—-x3e"‘
80.x-:—iy§+2dy+xy-—sm2x
81, x jy 2x2dy+(x——6)y 0.
82.315+2tanxg—-+2ytan x=gin 2 2.
98. %Y 4 e~ 1)4—— + 2 ety = 2 €27,

d2

2
84. Zx’+ (2 sin x — etn x) —-+'ysm2x-sm‘x

Solve the following equations by expansion into series: ,
2 d’y
35—-—-+ky 0. 37.d——,-+nxy=0.

dx?
dﬂ dll dll dy
6. (1+ + 7= - 28V L 2T 4 = 0.
§ ( z?) — = x ny = 0. :.’:Sacd2 xdx (x — 2)y O,
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d’y . dy
89. (r — 2% — —+2y=0.
(x — x?) e + 3 7 +2y

dPﬂ-H . dPn-—l

40. Prove that =@2n+1)P,.
dx dx
41. Verify for small values of n the general formula
—_ ar 2 n
Pr® = pmias @ D"

42. A particle moves in a straight line from a distance a toward a
center of force which attracts with a magnftude equal to -@5 If the
r

particle was originally at rest, how long will it be before it reaches the
center.?

43. A particle moves in a straight line from a distance a toward a

center of force which attracts with a magnitude equal to kr— § If the
particle was originally at rest, how long will it be before it reaches the
center?
\ 44. A particle begins to move from a distance a toward a fixed center
of force which repels with a magnitude equal to k times the distance of
the particle from the center. If its initial velocity is Vka?, show that
the particle will continually approach the center but never reach it.

45. A particle moves along a straight line toward a center of force
which attracts directly as the distance from the center. If it starts from
a position of rest a units from the center, what velocity will it have
acquired when it has traversed half the distance to the center?

46. A particle moves in a straight line from a distance a toward a

center of force which attracts with a magnitude equal to 51—2, r de-
r
noting the distance of the particle from the center. If the particle

had an initial velocity of ——1—’ how long will it take to traverse half the
distance to the center? \/;

47. A particle of unit mass moving in a straight line is acted on by
an attracting force in its line of motion directed toward a center and
proportional to the distance of the particle from the center, and also
by a periodic force equal to a cos kf. Determine its motion.

48. A particle of unit mass moving in a straight line is acted on by
three forces: an attracting force in its line of motion directed toward a
center and' proportional to the distance of the particle from the center,
. a resisting forece proportional to the velocity of the particle, and a

periodic force equal to a cos kt. Determine the motion of the particle.
49. Under what conditions will the oscillations of the particle in
., Ex. 48 become very large as the time increases?



CHAPTER XII

BESSEL FUNCTIONS

111. Bessel’s differential equation Consider the equation
d
2+x +(w —~n?)y =0, B

where 7 is a constant. To solve, we proceed as in § 110, assuming
for y the series

Y = aox™ + @™ + agx™t2 B I N AL NP (2)
‘We get
4%y - e
e m(m — 1)aox™ + (m + 1)ma:x
” + (m+ 2)(m + Dasz™2 4 - -,
Ix = maox™ + (m 4+ Daix™ ! + (m + 2)aga™+2 4. . -,
—_— nZy — — nZaoxm . ,n2alxm+1 — ngagx"” 2 _ .. .
:I:2y= aoxmi-?_{___.

Equating to zero the sum of the coefficients of each of the first

three powers of x, we have (m? — n2)ao = 0, 3)
[(m4+1)2 —n?la; =0, (4)
[(m + 2)* — n*az + a0 = 0. (5)
To obtain the general expression for the coeflicients, we heve
2,
x2%= et mArYm T — Daamt 4.
PO oo (mok e T A
dx
_ny_-,-,_ ...-—nzarxm*"'--..’
xzy: ...+.ar_2xm+'+.\.'
Equating to zero the sum of these coefficients, we have
[(m+1)?—n*la, + a,_2 = 0. (6)

275
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Equation (3) may be satisfied by m = 4- n. We shall first take
m = n. Then from (4), (5), and (6) we have -

ay = 0,
= e do »
2(2n+2)
o = — =2,
T r@m4r)
By use of these results we obtain the series
2 xt
= Go¥ (1'"2(2n+2)+2-4(2n+2)(2n+4)
x8 ~
T2 1.6@nt2CntbCnte T ) )
Similarly, placing m = — n, we obtain the series
. B 2 : zt
Y2 = do¥ <1+2(2n—2)+2-4(2n—2)(2n-—4)

xﬁ
+2-4-6(2%—2)(2n—4)(2n~—6)+ ' ) ®)
If n =0, the two series (7) and (8) are identical. If » is a
positive integer, series (8) is meaningless, since some of the coeffi-
cients become infinite. If » is a negative integer, series (7) is
meaningless, since some of the coefficients become infinite. Hence
if m is zero or an integer, we have in (7) and (8) only one particular
solution of the differential equation, and another particular solu-
tion must be found before the general solution is known. But if n
is not zero or an integer, each of the two series converges for all
values of x, as the student may easily show by means of the ratio
test (§19). Hence we have two particular solutions of (1), and
the general solution is et +F Coye.

112. Bessel functions of integral order. We shall restrict our-
selves in this section to the case in which n is an integer, leaving
to another place the consideration of fractional values of n. We
consider in'the first place that = is a positive integer. The series
for 1 in § 111 converges. To make the solution definite we place

1
T 2npl

Qo
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and have the Bessel function of the first kind of order =, where"n
is a positive integer. This is denoted by J,(x), and aceordingly

n x2 . .’154
(@) = W'Q‘Wm+n+%mm+nm+m

xﬁ
TSt Dt oty T )

" x" +2 Q’:n + 4

Tonpl T 22 2(p 4 1)) + 5 931 1 2)1

xn+6
T e3lm 8yl
The general term is

= D*

znt 2k

M2k + f)!

If we place k =0 we get the first term of the expansion of
J.(x) provided we place 0! = 1, which is customary, as an obvious

1
extension from the general relation (n — 1)! = %

We have, finally, e 2k
Jn = S -1 k d °
(x) kgo( ) M+ 2L 4 k) 1)

This holds for positive integral n’s and also for n=0. In
particular,

2 4 2k

JO(Q?) =1 -xz—g + 2—-————4(2!)2 —_— -+ (_ l)k é}_f_(___w +.e (2)
x3 z® ) p2k+1
Ji(x) = 2 232,+‘2?2—!*3!—- + (= DF —2?’:;‘—%!—(1_{—{_——1—)_!4“ e (8)

From the series given above many important relations may be
obtained. We shall first prove the relation

£ o) =~ Ji(a). @

It is evident that the derivative of the second term of (2) is the
negative of the first term of (3), and that the derivative of the
third term of (2) is the negative of the second term of (3). To
show the general law we take from (2) the term next after the one
written ; namely, p2k+2

(_ 1)k+l 22k+2[(k + 1)1]2
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2k + 2)x?kE+1
225 +2[ (ke + I
which reduces to the last term written in (3).
Hence equation (4) follows.
The general term of 2"J,(x) is
1 * x2n+2k
=D on+2kp1(n + k!
~nd if this is differentiated with respect to z, it becomes
2n4+2k-1

Tts derivative is (— 1)¥*!

X
on+2k—1kl(n + k — 1)1

which is the general term of J, _;(x) multiplied by x*. Hence

- D*

d , .
Tn [z"Tn(x)] = 2"J 0 1 (). (5)
In the same manner we may prove that
d
gp @] = = 27 (@) (6)

From (5) we have

dJ,(x
nx" 1, (x) + 2" % = 2", _1(2),
dJn(x) n
or, rearranged, = Jn1(®@) = 2 Ja(@). M
Similarly, from (6),
dJ.(x) n
i 2 Jn(@) ~ Jp41(2). (€)]
Then by combining (7) and (8) we have
dJ,
Jur@) = Jui(® >—2 Bl ©)
x
Jn-1(x) + Jni1(2) = Jn(x) (10}

We have, as yet no definition of J,(x) when = is a negative inte-
ger. Series (7), § 111, then fails to converge and series (8), § 111,
gives nothing new, for if we place n = — m in (8) we have simply
series (7) with n = m. We shall therefore introduce a definition
for J_,(x) with n an integer by demanding that the relation (10)
shall be true for negative values of n.
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If we place n = 0 in (10), we have
J_1(x) = — J1(z). (11)

"If we place n = — 1 in (10), we have
T2(@) + To(e) = — 2 J_u(a),
whereas if we place n = 1 in (10), we have |
Jolx) + J2(x) = g Ji(x).

Combining these last two equations with the aid of (11), we

have J_a(xt) = Ja(x). (12)
Again, placing in succession n = — 2 and » = 2 in (10), we have

. 4
J_5(x) + J_a(x) = — - J_o(x),

4
Ji(@) + Js(x) = _ J2(2) 5
whence, by aid of (11) and (12),

J_3(x) = — Js(z). (13)
Continuing in this way we reach the general result,
J—-n<x) = ("' 1)”.]”(27). (14)

‘We have not, however, an essential new solution of equation
(1), §111, and theorem I of §102 is not yet applicable.

It is now easy to show that equations (5) to (9) are valid whan
7 is a negative integer.

113. Roots of Bessel functions of integral order. We shall prove
the following theorem :

Between any two consecutive real roots of J,(x) = 0 lies one and
only one real root of J, ,1(x) = 0.

From Rolle’s theorem we know that between two consecutive
real roots of x7"J,(x) = 0 lies at least one root of the derivative
of x7"J,(x), which, by (6), §112, is — 2" "J, 41(x). No root of
x~"Ju(x) can coincide with that of its derivative, —- &~ "J,1(X),
for if we place y = 27 "J,(x) we have
d% 14+ 2ndy

dr* T T dx

+y=0;
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ax;d if both y and % are zero for the same value of z, so also
d?y
de
equation, are zero, and y is a constant.

Again, if in (5), §112, we replace n by n+ 1, we infer from
Rolle’s theorem that between any two roots of z"*1J,,:(x) =
lies at least one root of z"*!J,(x) = 0.

Hence, disregarding for the moment the case in whlch a root
of z7"J,(x) = 0 is zero, it follows that the roots of*J,(x) = 0 and
Jni1(x) = 0 lie as stated in the theorem.

To cover the case in which x = 0, let x = £ be the smallest posi-

= 0. Then all derivatives, computed from the dlﬁ'erentxal

tive root of J,(x) = 0. Then z = — £ is also a root of J,(z) =0,
1/‘\‘.,'7,@)
8 6  —o——o— X
Ol 1 22483 W 8 8.6 10"
FiG. 95

as is seen by the series expansion. Hence by Rolle’s theorem and
(6), §112, there is at least one root of x™"J,,1(x) = 0 between
z=§and x = — £. Such a root is x = 0, as is seen from the series
expansion for J,.1(x). There can be no other root between £ and
— &, for if there were, x = £ would not be the smallest root of
Ja(x) = 0. Hence the theorem is proved.

The theorem is illustrated in the graphs of y = Jo(x) and

114. Bessel functions of integral order as definite integrals. We
shall first prove that the coefficient of {® in the expansion of

x 13

“e—-2) . . oy .

92( i) is Jn(x), where n is a positive integer. We have, by use
of Maclaurin’s series,

z1
2t

eZ (‘ —) . eZ‘ e )
__l Mi2lo . o qeill >

(150 gt =T DGR )
‘We shall obtain the term containing ™ in the product, when n is
positive, by taking [=n + k in any term of the first series, multi-

plying that term by the term in the second series which involves —tl

and summing on k. We have
" +2k

—1)* n__ n
2V s et = e
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. L. 1 .
To find the term containing o we place k=1l +4 n in any term

of the second series, multiply that term by the term of the first
series which involves ¢!, and sum on I. We get :

(— 1)"J,,(az:)tl,l =J_(x)t™"

This is what we wished to show.
Hence

("D = Jo(@) 1@+ Jo @)+ - - - + Tu(@)" +
FJa@ Tt F T 2@ T p @ (1)

Now place
t¢

o~ | pd

] 1 . . .
e t— o= e — e = 2 ¢ sin ¢. (2)

t=e
Then on the left of equation (1) we have

e;(t-—l- = @™ M — aog (z sin ¢) + 7 sin (x sin ¢). (3)

On the rlght we combine each pair of terms containing ¢* and
t~™ and, by use of (11), § 112, we have

5o@ + 510 (1= )+ Ia@ (2 + )+ Sa@ (0= 5) +
1
+ Jzk(x)<¢2k+ pl—,c>+ J2k+1(x)(t2k+l — W)_‘- - ()

By (2), t"”"-{»—%&:ez""‘"+e”2""‘"=2cos2k¢,

2R+ __ 1“‘1“ = 2k+1)id _ ,~(2k+1)i6 _ 9 ; qip @Rk4 1o,

so that (4) becomes
Jo(x) + 2 Ja(x) cos 2+ 2 Js(x)cos 4 P4+ - -
+ 2 Jop(x) cos 2 ke + - - -
+ 42 Ji(x) sin ¢ +2J3(x)sin3 p4- - -
+2J2p () 8in (2k+ Do+ -1 (5)
This is to be placed equal te (38), and the real angd imaginary
parts equated. The result is
cos (xsin ¢) = Jo(x) + 2 Ja(x) co8 2+ 2 J4(x) cosd p+-- -, (6)
sin (x sin ¢) = 2 J1(x) sin ¢ + 2 J3(z) sin 3 ¢
+2J5x)sinbd+---. )
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‘We know from elementary integration that

f ﬂcos"’ ne de = f 'sin2 ne dop = kit

Jo ) 3 2

f"cos Bided s # =[;in Bt ol 7 e == 0. o)
0

Hence if we multif)ly all terms of (6) by cos n¢ d d all terms
of (7) by sin n¢ d¢, and integrate between 0 and : have

e (20) = —;1; jo‘ ”cos (x sin ¢) cos n¢ d¢, (neven or ()

= ;lr- b/o‘ ’rcos (x sin ¢) ecos n¢ do, ’(n odd)
¥ ®
Th)i= % j(; sin (x sin ¢) sin n¢ dp, (n odd)

= ;lr— ‘[; "sin (z sin ¢) sin n¢ d¢p. (n even)
From this it appears that
() — % j(: ﬂ[cos (z sin @) cos n¢ + sin (x sin @) sin neldd
whether n be odd or even, and therefore
(@)= %~ [ ﬂcos (np — x sin ¢)dd. (n any integer) 9)

Another integral form may be obtained as follows:
We have seen (§ 68) that

f"sin2 "¢ cos?kp dep = 2f§sin2”¢ cos’*pdp=Bn+3,k+ 1)
0 0
_Tn+ Tk +3)

T+ k+1) ‘
L8 O 18 Gl
= 27 k(1 k)1 Ly

" Therefore

L = g - AT 2k
(‘n-i-k)!—1~3---(2n-—1).1.3...(zk_l)ﬂ.lsm ¢ cos™ ¢ dgp.
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If we substitute this in the general term of J,(x), that term

becomes g2k

1\ k " 2 "21;
=D 2'°k!.1-3--.(2n—1).1-3---(2k—1)7rfoS‘n "pcosT ¢ d

xn

= (— 1)F bl f"sinz“cb cos?t ¢ dop
@r!-1-3---@2n—Dmwlo

~ z "sin? (@ cos ¢)**
~1'3---(2n—1)r,£S1n2 ¢[(_1)k k! ]dd"

Let this now be summed on k. Since the Maclaurin expansion

for cos x gives (x cos ¢)2*
cos (x cos ¢) = D>, (— 1) ——Fn""—,
we have o z @2k)!
_ xn w . on '
() = 13 .. (2n—1)7rfo sin“"¢ cos (x cos ¢)d¢. (10)
Still another integral may be obtained as follows:
In (10) place t = cos ¢.
We have n
Jal) = d f“(l — )" ¥ cos (2t)dt
ST @n— D ) 7 cos (T)ék.
+1 1
Evidently f (1— )" ¥ sin (zt)dt = 0,
-1

sinee the function to be integrated is an odd function. Therefore

— z" +11 2\ —% £ o 1d
{"(x)—1-3---(2n—1)7rj:1 11—t [cos (xt) + ¢ sin (xt)]dt
xn +1

eint(1 — ¢2)" " Hqy, 11)

=1-3---(2n—1)r[1

This is sometimes taken as the starting-point for the diseussion
of the Bessel functions.
115. The function I,(x). Another Bessel function of importance
is defined as follows :
I.(x) = v "J,(1x)
k(sr\n+2k
Py
2 kl(n+k)!

xn+2k

=3 2 L + k)1

(1)

2k
in particular, Io(2) =222kx(k Nz
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Formulas (5) to (10) of §112 lead to corresponding formulas for
I,(x). Consider

d . .
2 @) = )]

= d% {(:f,)‘" J,,(ix)]
= 7 755 L0 (i2)
= o G ) by (5), §112]
=M ", _1(1x), = 2" 1,1 (x). 2)
Similarly, (% [ " 1.(x)] =2~ "I 41(2). 3)
The two formulas (2) and (3) lead to
Lna®) = Tnia(®) = 22 1,(2), @
and Laa@ + L@ =2 = L@). ®)

It is also easy to show that
' y=I.(2)
satisfies the differential equation

d2 d '
xﬂ’ﬂ’iﬂﬁ—(an%wo. ®)

116. The Bessel function of fractional order. Referring to the
definition of J,(x) for integral n, we may form the definition for
fractional »’s by replacing n! by I'(n + 1). Now both of the
series (7) and (8), § 111, converge, and we have the two functions
n . l)kxn+2k

2

_r -

2" Tn+1) " =2 2" 2T (n+-k+1)
" o (— 1)kx—n+2lc

2-”1-‘(‘— n -+ 1) b2 —22—n+2kk!r(_ n+ k + 1)' (2)

The complete solution of the Bessel equation is, then,

¥ = c1Jn(2) + c2J_n().

Jn(x) = ey

and J_,(z) =
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The formulas already derived, so far as they depend upon
properties of n! which"are shared by I'(n 4 1), evidently hold,
but those which are based upon the hypothesis that » is an integer
evidently fail. It appears, then, that formulas (5) to (10), §112,
still hold. Formula (9), § 114, is not applicable, but formulas (10)
and (11), §114, may be replaced by

— _____f:__ e 204

Ja(x) = T D) fo sin“"¢ cos (x cos ¢)do, (8)
— _...__...f:___.. ! wt — 2yn—%

In(@) = oVl (n+ %) j:le (1= )2t )

since the proofs of §114 may be repeated for fractional values of
n with the use of the Gamma functions.
Special interest attaches to the case in which n» = } or an odd

multiple of }. (— 1)kzhz?®

Webave - J4() =22%22*k!r<k+%)'
But Fk+3)=®k+4k—3) - % 'ty
(2k+1)(2k——]) C1VT
2k+1 :

(_ )k 2k+1 2
Therefore Ji(z) = \, 2 GET DT =\f;-r-a;sinx

by Maclaurin’s series for sin z.
In a similar manner, J_j(x) = «\I cos X

By use of (10), § 112, J,.(x) may now be found in terms of sin x
and cos x for any » of the form 2k+1

2

117. Bessel functions of the second kind. When % is not an
integer, the complete solution of the Bessel equation is

Y= c1Jn(x) + c2J-n(); 0}
but when 7 is an integer,
Jon(2) = (= )"Ju(2), (2)

and (1) contains only one arbitrary constant and is “herefore not
the complete equation. We must therefore seek another particular
solution.

We shall apply theorem IV, § 102, and place

Y= Jn(x)u (3)
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in the Bessel equation. Then if p = % fmd Jo (x) = ;i(ix[ I ()],

the equation for p is readily found to be

274 (@) 1> ap _ .

< T.@ |z dz + p - @

whence 2log J,(x) +log =+ log p=c.

. , __ G

Therefore p= T %)
dx

and U= lem + Cos. (6)

By using the power series for J,(x) we can write (5) in the form
1.
P= g1 o+ ax® 4 et + - - ), )

where the coefficients do not need to be explicitly determined for
our present purpose. It is essential to notice, however, that the

series for p involves a term Cn
- 8
x

if » is a positive integer, and that the coefficient ¢, can be taken
as unity because of the arbitrary constant Ci in (6). Hence, from
(7), we have for u a power series of the form
u="box 2"+ -+ by1x" 24 Ca+log x + bppax®+ - --. (9)
Using this in (3) we get
. Y = Jp(@) log x + P(x), (10)
where P(x) is a power series in « arising from the multiplication
of the series (9) by the series for J,(x).- We have then
P@)=ax "+ axx " 24 dag,x "2 4., (11)
and shall proceed to determine the coefficients by substituting the
solution (10) in the Bessel equation. We get
2 2J,/ (x) + 2P (x) + 2P’ (x) + (> —nH)P(x) =0, (12)
which can be written

k=x r=00
22(n+2k) A" 43 B, 2T = 0, (13)

k&0 . r=y
here Ay = (= DF 14
w FE o T (n k)1 (14)
By = 0; (15)

By, =47r(r—mn)ag,+az,—2. (@ >0) (16)
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When r < n, the terms of the second series in (13) involve
powers of x which do not occur in the first series. Hence for such
values of r we have

B2,=0, (r<mn) am
which, from (16), gives the recurring formula
2,2 .
az'_4r(n-—r)' (r <m) (18)
whence
ao
az, y (r<m) (19)

T n—1)(n—2) - (n—r)

where ao is still to be determined.
On the other hand, when r = n, the terms of the first series in
(13) combine with the terms of the second series. We place

r=n+k (k=012"--0) (20)
and have as the coefficient of 2" +2*

. . 2(n+2k)Ar+ Bani2,t =0,
which gives

2+ 2k)Ax + 4 k(4 k)azni2k+ G2ni2p-2=0. (21)
When k = 0, (21) gives
272A0+a2nv2=0. (22)

“We determine Ay by placing r=n—1in (19) and determine
02n.—2 by placing k=0 in (14). We then find, from (22), that

(n— 1! )
so that, frem (19),  lm—r— D1 o
“r= =g gy < (24
When & > 0, we may write (21) in the form
o @2tk A2p+2k—2 1 1
— _— — . 2"\
2 A, T ZkintbAr kT ntk (25)
From (14) we have
2 k(n -+ k)Ak = - Jj Ap-1.
Hence (25) gives us the recurring formula
A2+ 2k A2 p+2k—2 1 1 o
—2 e = 2 - . 26
2 A 2 v +k+n+k (26)
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Our formulas leave a2, undetermined, since k cannot be placed
equal to zero in (26) and r is less than n in (24). Therefore we
may give a2, an arbitrary value, which we shall so choose that

ae_q 1,1 1
P ittty @7
By repeated application of (26) we have now
1 1 1 1 1
'a2n+2k=—*§‘4k[1+’2'+'"+E+'1+§ +~j’_7 (28)

All the coefficients of P(z) in (11) have now been determined by
formulas (24) and (28). Hence we have from (10) the solution of
the Bessel equation which we shall call K,(x); namely,

1 r=n—1 (,n —_—r — 1)' x—n+2r

Ko(z) = Ju(z) logz — = 2,

2 “~ 2—-n+2rr!
1k=°° (___ l)kxn+2k 1 1
1 1
+1+-+---+n+k]- (29)

In the second summation, when &k = 0 the terms 14 = + - =
are to be omitted. k
We have now as a complete solution of the Bessel equation

Y = a1Jn(x) + 2K, (). (30)

By giving different values to the arbitrary constants in the
last equation various forms of the solution of the second kind may
be obtained, and some of these forms, denoted by various letters,
have been used by different authors.

It is possible to show that K,(x) satisfies the rela’uons (5) to
(10), § 112, which are satisfied by .J, (x).

EXERCISES
1. Prove formula (6), § 112.
d
2. Prove that E:; [x*J.(ax)] = ax" T, _1(ax)-
d_’y + 1+4+2ndpy
dx? x dr
is satisfied by Y=z "],

3. Show. that y=20



EXERCISES
d2
4. Bhow that T + 1+ n) + y=0
ig satisfied by y=x 2J (2 \/—)
d%y
5. Show that xdx2+(1 n)d$+y 0
is satisfied by = x'ﬁ'.z,,(z Vz).
2 —_
6. Show that dy, l-2ndy, o
dx? z dx
is satisfied by ¥ = x"J,(x).
d2 n2 — 1
7. Show that +< ' 4>y=0
da? x?
is satisfied by y= VzJ,(az).
8. Prove that
4 J,"(x) = Jn2(x) — 2 Jp(x) + Iy, 2(2).
9. Prove that

10.

11.

12,

14,
15.

16.

17.

-
where 7 is an integer.

18.

2Jn(x) = 2(n + VI 41(2) — 20 4 2(2).
Prove that

93 Jo1(E) = T3 (@) — 3 Tn-1(2) + 8 Tn1(X) = Jnsa(@).

Prove that  Jo(x) = — i Jo' (x) + Jo' (x).
Prove that J_1(x) :\z cos .
. Prove that J3(x) = E— (sx_p__a_c — cos x)
T\ X

2~ . CO8
Prove that J_3(x) _\/mc(— sin & — = >

3 —x?
x2

Prove that Js(z) = \/112.::<

. 3
sinz —=-cosx).
x

Prove that J_(;(x) = \/7—:: @ sin z + x cos x>

Prove from (1), § 114, that
Je=co
Jn(x +9y) = Z Je(@)In-x(¥),

k= -—o00

F

289

L z(y_1 SE( L
Prove by multiplying the expansions for e? ¢ ‘) and e 2(‘ ¢ ) that

[Jo(®)]? + 2[J1(x) 2 + 2[Ja(z)]2 + - - - = 1.

16, Verify formulas (9) and (10), §112, for K.(x).
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20. Sho¥ that the equation
0*v 10V  10%V
e TR
is satisfied both by
V =cos n8J,(r) and by V = sin nfJ,(r),
where 7 is an arbitrary coristant.

21. Show that the equation
v, 1ov v 1av_
or?  r?o¢r 022 r or
is satisfied both by
V =e**2 cos ngpJ.(kr) and by V =e***sin ngJ,(kr),
where k and n are arbitrary constants.

22. Show that Lim J,(x) =0, and then show, by repeated use of
n-—-x

(10), § 112, that

+ V=0

Jn-1(2) = % (MJa@) — (n+ 2)Jps2(x) + (n + 4)Tppa(z) — - -],

the series extending to infinity.
28. Show that

4In@) _ .?:l'ﬁ Tu(@) = (1 + 2)Tar2(2) + (1 + 4)Tn 1 4(2) — - ]
dx ri2

24. Show that Lim J_ 4o @) = (= 1)"J,(2),
e 0
where n is an integer. L
25. Show that Jo(x) =~ /‘;"cos (x cos ¢)d¢p.
T

26. From Ex. 25 show that

1
e~ Jo(hx)dx =
f ’ Va2
2
27. Show that gl__y + S xy =0
x*  4a®

is satisfied by y= \/?. Jl[(§>"].
a I \a
28. Show that y = lf" cos (ng — x sin ¢)de
; /o ' ’

satisfies the differential equation

d sin nw

xzdy-{-x ﬂ+(x2—n")y - (& — n).

d2



CHAPTER XIII

PARTIAL DIFFERENTIAL EQUATIONS

118. Introduction. A partial differential equation is an equation
which involves partial derivatives. In but comparatively few
cases can the solutions of such an equation be written down ex-
plicitly. It is not the purpose of this text to discuss the theoretical
questions involved in the study of partial differential equations,
but merely to notice certain equations which are important in
applied mathematics and to indicate certain methods for their
solution. We shall accordingly leave untouched such questions as
the proof of the existence of solutions, the convergence of series
involved, and the validity of operations upon such series.

In general the solution of a partial differential equation involves
arbitrary functions, just as the solution of an ordinary differential
equation involves arbitrary constants. In a practical application
the problem is usually to determine a particular function which
will satisfy the differential equation and at the same time meet
the other conditions of the practical problem.

119. Special forms of partial differential equations. Partial differ-
ential equations sometimes occur which can be readily solved by
successive integration with respect to each of the variables, or
which can be otherwise solved by elementary methods. No gen-
eral discussion can very well be given for such equations, but the
following examples will illustrate them:

0%

Example 1. =0
Tamp ox oy

By integration with respect to y we have
0z
— x y -
P b1(2)

where ¢, is an arbitrary function. Integrating with respeet to x, we have

z = ¢2(x) + P3(y),

where both ¢2 and ¢; are arbitrary functions.
291
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’ 2,

Example 2. g—x-i = — g”z.

If x were the only independent variable, the solution of this equation
would be 2 = ¢, sin ax + ¢, cos ax.

This solution will also hold for the partial differential equation if we
simply impose upon ¢, and ¢, the condition that they be independent of
z but not necessarily independent of the other variables. Thatis, if zisa
function of x and y, we have for the solution of the differential equation

z = ¢1(y) sin ax + ¢2(y) cos azx,
where ¢, () and ¢2(y) are arbitrary functions.

0% 0%
E le 3. — —a’-——=0.
xamp P a Pk
If we place x+ ay =u and x — ay = v, the differential equation
becomes 0%

o
the solution of which (Example 1) is
z= ¢1(u) + $2(v).
Hence the solution of the given equation is
2= ¢1(x + ay) + 2(x — ay).
When a? = — 1, we have
2= ¢(x + W) + d2(z — )
as the solution of the equation
o 0
or®  oy*
120. The linear partial differential equation of the first order.
This is the equation oz
P —_—
ox
where P, @, R are functions of z, y, z.

=0.

. 1
Qay—- ) ¢y

Let this equation be solved for il so that

5 ox '8
2 2

By suecessive differentiation of (2) we may form all derivatives
of the type o+

cx" oy®
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0z
in terms of z, Y, 2 and

8 , except that we cannot determine the

L 2'3)

’ \é?y’ o
z ) from these

ox’ 31/' 0 )

By using these results we have a Taylor series, as in § 38, which
formally satisfies (1). It may be shown that this series will
always converge in the neighborhood of (xo, 9o, 20) and therefore
defines a solution of (1). The terms in ¥ in this series define a
funetion of y which is arbitrary, since the coefficients of y in the
series expansion are arbitrary.

The discussion given above sketches the proof of the existence
of the solution of (1) and makes clear why it is that the solution
involves an arbitrary funetion. Actually to obtain the solution,
the following method, based upon geometric considerations, is
preferable:

32
assume the values X = o, Y = Yo, 2= 2o, 81/

7+8

arbitrarily and compute the values of <

Let z=f(z, y) (3)
be a solution of (1). The normal at any point to the surface
defined by (3) has a direction g; % — 1 (§47), and (1) asserts

that this direction is orthogonal to P :Q : R. That is, the values
of P, Q, and R as determined at any point determine a direction
on the surface (8). Hence if this direction is followed from point
to point of (3), a curve is traced on (3). This curve is, how-
ever, a solution of the equations

gf:fdﬂ.___éf. (4)

Hence through every point of (3) there goes a curve of the
family defined by (4). These curves are called characteristics, and
we have shown that any solution of (1) is a locus of character-
istics. Conversely, any surface which is a locus of characteristies
will be a solution of (1), since its normal at each pomt is perpen=
dicular to a curve of (4) and hence to P : Q : R. |

The problem of solution is then reduced to that of grouping
the curves (4) into surfaces. This may be done as follows:

Let u@, y,2)=c, 0¥ 2)=Cc (6)
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be the solution of (4), where it is essential that the constants of
integration should appear on the right of the equations. Then, if
we form the equation é(u, v) = 0, (6)
where ¢ is an arbitrary function, we have the desired surfaces.
For if in (5) we give ¢; and ¢; such values that
o(ci, c2) =0, )

the corresponding values of % and » satisfy (6) identically. That
is, the curves (5) lie on (6).

We have, accordingly, the following method of procedure:

To solve equation (1), first solve equations (4) for the character-
i8tics and place the solution in the form w = ¢1, v = c2. Then

¢(u’ v) = 0,

where ¢ s an arbitrary function, is the solution of (1).

For example, given

(ny — mz) —3—5 + (lz — nx) 565 = mx — ly. €)]
We form e _ dy __dz ©
ny—mz lz—nx mx—1ly
the solution of which is .
2?4y +2=a, le+my+nz=c. (10)
Hence the solution of (7) is
o @? + y% + 22, lx 4+ my + nz) = 0. (11)

From the discussion it follows that a solution of (1) may be
passed through any curve which s mot a characteristic. For if C is
such a curve, equations (4) determine the direction of a charac-
teristic at each point of C and therefore determine the whole
characteristic through that point. The locus of all characteristics
through C is a solation of (1).

The student will do well to notice the relation between the

equations o2 dz
p— — =R, ‘ 12
dr_dy _de
P-Q R (13)
Pdr+Qdy+ Rdz=0, (14)

with P, Q, R the same in all the equations. Equations (13) rep-
vesent a family of curves, equation (12) represents surfaces made
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up of these curves, and equation (14) represents surfaces orthog-
onal to such curves provided the equation has a solution. Thus

@dy dz

x Y z

represents cones with vertex at the origin, and
zdx+ydy+2dz=0
represents spheres with center at the origin.

When the family of curves (13) is given, the surfaces (12) al-
ways exist, but the surfaces (14) are not always possible.

121. The Fourier series. Before proceeding to the study of the
differential equations of the next sections it is necessary for the
student to have a working knowledge of the Fourier series. This
is a series of the form

-

-@-.—}—a,cosx+a2c032:c+a3cos3x+---
+bysinx+besin2x+basin3x---. 1

We shall not eoncern ourselves with the theoretical questions
involved in the careful study of this series, but shali give only a
few practical rules for finding and using such series. It may be
proved that it is possible to expand a function into such a series
which will represent the function in an interval of length 2 &, pro-
vided the funection is'single-valued, finite, and continuous except
for finite discontinuities and has not an infinite number of maxima
or minima.

Let

f(m):%—{—alcosx-{-azcosz:r—l—- -4 apcos ke - - -
+bisinz4besin2x4---+bsinkr4---. 2)

Our problem is to determine the constants so that the series will
represent the function in the interval (— m, 7).

To determine ay multiply (2) by dx and integrate from — 7 to
m, term by term. The result is ‘

. I f@)dz = aor;
whence ap = -7—];_ "f(x)dx, 3)

c
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since all the terms on the right-hand side of the equation, except
the one involving ag, vanish.

To obtain the other coefficients, we make use of the following .
elementary integrals, which may be obtained by direct inte-

gration : Lo
sin mx cos nx dr = 0,

n

L g

[ cosmrcosnedc=0 when m=#mn, ,
v h 4)
. =m when m=n,

f sin mx sin nz dr =0 when m #mn,

w
= when m=n.

Hence if we multiply (2) by cos kx dx and integrate between
— 7 and m, all terms on the right give 0 except the term involving

ay. Therefore 1 -
@ = f(x) cos kx dx. (5)

-

It is to be noted that (5) reduces to (8) when k= Q. Similarly,
if gve wmultiply (2) by sin kx dx and integrate between — 7w and ,

we have 1 /- .
by = p [ f(x) sin kx dzx. (6)

For proof that the integration of the series is valid the student
is referred to advanced treatises.

For example, let us expand ¢ into a Fourier series in the interval
(— w, ). We have

T

[

—

— e

’

ao=}- "e’dx=
p

ot

_1rr __[e*(k sin kx 4 cos ch)]”
ak—wiﬂe’coskxdx---[ T+ 1)

—

. e" — €
T w4+ 1)
_ e —e "
T (ki +1)
b = %r f o sin ke di = [ez(s“‘ f(’ckz ffj’s kx)] -
k(=€)
T wGkE+1)
k(@ —e)

=D henk is odd.

when % is even,

when £ is odd,

when £ is even,
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Hence
e—e¢"/1 1 1 1
_————;r——<§——§cosx+-5-0052x—ﬁcos3x+-..>
e"'_.e“"’ 1 . 2 . 3 .
»+ - <§smx—-5—sm2x+—1—dsm3x_.,.). <)

This series defines ¢” only in the interval (— m, 7). Out-
side of this interval the values obtained from the series repeat
themselves because of the peri- Y
odic property of sin £xr and
cos kx. Hence (as shown in
Fig. 96) the series represents
a periodic function which coin-
cides with ¢” only in the interval
(— m, ).

It is not necessary that f(x)
should be defined by a single
equation in the entire inter-

val (— m, w). In case it is not /
so defined the integrals in (5) \ /
or (6) break up into two or | d x
more -37 -r O T 8w
For example, let F16. 96
f@)=z4+7 when —7 <z <0, ®)
f@)=m—2x2 when 0<z <
Then
« 1 0 1 o
ap = — (x+7r)dx+—f (r —2)dx =,
TJon wJ0

0 n
ak:—l-f (x+7r)coskxdx+lf (m — z) cos kx dx
T TJo

=:2£§(i—coskr) (k+0)
= 0 when £ is even,

= ;475_5 when k is odd,

. 0 L
bk=lf (x+7r)sinkxd;c+1f (w — ) sin kx dx = 0.
TS - ™Je



298 PARTIAL DIFFERENTIAL EQUATIONS

Hence the series for function (8) is

cosx cos3zx cos’5:c
iz T g )

and the graph of the series Y

is shown in Fig. 97. '
It is also possible that :
the given function may X

have discontinuities in the -TT Ol " . "
interval (—w, w). For FiG. 97
example, let

f®)=—1 when —7 <z <0,
f@)=1 when 0 <z < .

T 4
f(x)=§+;<

(10)
Then
1 0 1 ™
ak=—f (—-coskx)dx—i——f cos kxdx =0,
T wJo

2(1 — cos k7)

0 "
bk=1f (—sin k:c)dx+—1-f sin kx dx =
TJr ™ Jo wk

= 0 when k is even,

= 4 when £ is odd.
kw

Hence ) = % (sm x sin8z sinbz . _>’

1 + 3 + 5 11
and the graph of the series is shown in Fig. 98.

In place of the interval (— m, m) we may take any other inter-
val of length 2 7, namely (a, a + 2 =), for formulas (4) remain
valid if the limits of inte- Y
gration are taken as a and
a+ 2 w. In that case the
limits of integration in (5) =z =71 R
and (6) are to be corre-
spondingly changed.

Also, the, interval in
which the expansion takes place may be taken as (—e¢, ¢) when
¢ is any number. To show this we take

' (12)

™

FiG. 98
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Then as y varies from — 7 to =, x varies from — ¢ to ¢. We
have oy
@ =1(2)=rw

=.g'2°+axcosy+a2 cos2y+---
+bisiny+besin2y+---

. (13)
_—_%_*_alcosﬂ_‘_azcosg—ﬂ-—x_*_...
2 c c
Fbsin ™ 4 bysin 25,
1 ‘ 1 e k
‘where ’a,,=—f F(y)coskydy=- | f(x) cos 2= gz
TS —m CJ—¢ Cc (14)

. 1 w c
and. by = ;I F(y) sin ky dy = %f f(x) sin _k_::_x dzx.

122. The Fourier series with sines or cosines only. If f(x) is an
‘even function, namely, if f(— z) = f(x), then f(x) cos kz is also
“even and f(x) sin kx is odd. Hence

ar = %_I:f(x) cos kx dx = ?rﬁ"f(x) cos kx dx, 1)

br = %[:f(x) sin kx dx = 0. 2

Hence an even function will be expanded into a series of cosine
terms in the interval — r < x < =, and the coefficients may be
computed by (1). An example occurs in series (9), § 121.

Also, if f(z) is an odd function, namely if f(— z) = — f(z), then
J(x) sin kx is an even function and f(x) cos kz is an odd function.

Hence 17"
- ai = ;f f(x) cos kx dx = 0, 3)

be= }rf_:f(:v) sin kz dz = %wa(x) sin kx dz. 4)

Hence an odd function will be expanded into a series of sines
in the interval — 7 < 2z < m, and the coefficients may be com-
puted by (4).

From this it follows that any function f(z) may be expanded in
the interval from 0 to 7 into a series of cosines or a series of sines
at pleasure. For we may, in the first place, define another function
F(x) which agrees with f(x) for positive values of z and has for
negative values of x the same values which f(z) “has for positive
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values of z. Then F(z) is an even function
and may be expanded into a series of cosines.
For example, consider f(z) = ¢* and let
F(x) be the function represented between — 7
and 7 by Fig. 99, where the right-hand por-
tion is the curve y=¢" and the left-hand
portion is symmetric to the right-hand portion
with respect to 0Y. We may expand F(x)
into a series of cosines, using (1), by which

ak=gf e® cos kx dx

_2(e+1)
(k2+ 1)
2" -1
T wk?41)
Hence in the interval from 0 to T
f:ag—-—l-< + = c032x+——cos4x+ >
T 2 5

2(e + 1)<

™

when £ is odd,

when k is even. (5)

2 10 26

In the second place, having given f(x) be-
tween 0 and =, we may define F(x) as equal
to f(x) between 0 and = and equal forz = —a
to the negative of the value of f(x) for x = a.
Then F(x) is an odd function and may be ex-
panded into a series of sines for which the
coefficients are computed by (4).

For example, let f(x) = ¢%, and let F(z) be
the function represented by Fig. 100, where the
right-hand portion is the curve y = ¢* and the
left-hand portion is symmetrie to the left-hand
portion with respect to 0. We may expand
F(x) into a series of sines and, using (4), have

bk=-2-fe’sink:cdx
™ Jo

« 2k +1) -
=Tl when £ is odd,
2 k(e"—1)
“wk:+1)

when k is even.

Y

-

0 T X

Fi1G. 99

co sx+}—cos3a:+-—cos5x+ > (6)

Y

Fia. 100
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Hence in the interval (0, 7) we have

x_ﬁt}_)(l L 5 )
et = - 2smx+10s1n3x+265m5x+---

2(e”—-1)<g. 4 . 6 ..
— - 5sm2x+17sm4x+37sm6x+---). (7

The student should compare series (6) and (7) with (7), § 121. .
Each series represents e” in the interval (0, 7), but differs from
each of the others in the function represented between — w
and 0.

128. Laplace’s equation in two variables. An important equa-
tion in two variables x and ¥ is the Laplace equation

VR N
2 = @

It has already been shown (§119) that the general solution of

this equation is of the form

V = fi(x +1y) + fo( — 1),

where f; and f. are arbitrary functions. But this is too general for
practical use, as the difficulty of determining the functions to
satisfy given condilions is too great.

The following method, however, has been found useful. The
student should notice that this method is not used to find a gen-
eral solution, but simply to find a particular solution which may
satisfy given conditions. We place

V=XY, 2)

where X is a function of z only and Y is a function of y only, and
inquire if it is possible so to determine X and Y that (1) shall be
satisfied. ‘

By substitution (1) becomes, after a slight rearrangement,

1ex_ 1y
X dz2 Y dy?

3)

Now a change in z will not change the right-hand member of
(8) and therefore will not change the left-hand member. Similarly,
a change in y will not change the right-hand member of (3) and
therefore will not change the left-hand member. Hence each of
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the two expressions in (3) is a constant which we shall denote by
~ k2. Then (38) breaks up into two equations,
1@x_ L. 1y
X dx® Y dy?
the solutions of which are, respectively,
X == ¢; cos kx + ¢ sin kz,

k —ky.
Y = cge™ 4 cse™ Y

= k2, 4

and hence
= (c; cos kx + ¢o sin kx)(cae®™ + ce™)
= e"(A cos kx + B sin kx) 4+ e *(M cos kx + N sin kx), (5)
where A, B, M, and N are arbitrary constants.
Now in (5) k¥ may be given any value, fractional or integral.
Let Vo= Ao+ Mo
be the solution (5) when k = 0,
= e¥(4; cos x + Bj sin x) 4 e ¥(M; cos z + Ni sin z)
be the solution (5) when k=1,
Vo=e*(Az cos 22+ By sin 22) + e~ 2¥(Mz cos 2 x4+ N2 sin 2 x)
be the solution (5) when k = 2, and so on. Then it is evident that
V=Vo+Vi+Vat---+V, 6)
also satisfies (1). This is certainly true when = is finite. We shall
assume that it is true when we take the limit as » increases in-
definitely and (6) becomes an infinite series. This assumption of
course needs proof; but in a practical problem we should, as a
matter of fact, need only a few terms of (6), so that the matter is
.not of great practical importance. We have, then, as a solution
’ Of (1)) k=c
V= 2 [e* (A} cos kx + B; sin kzx)
k=0 + e " (My cos kx + Ny sin kx)]. (7)
It remains to determine the constants so as to satisfy given
conditions. This will be illustrated in the next section.
If the cobrdinates x and y are replaced by polar coordlnates
(r, 8), equation (1) becomes
0’v 1 3%V 10V
ot
We may solve this by the method that we used in solving (1)
Placing V = RO,

=0. (8)
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where R is a function of r only and © is a function of 4, and
reasoning as before, we are led to the equations

2
‘fi E, r & _yr=—o,
d2e .
and -dﬁ = = k29 »
whence R == cir* + cor%,

O = ¢3 cos kf + c4 sin k6,

and, by a repetition of the former argument, we have a solution
in the form

k=o

V =2 [r*(Ay cos kf + By sin k) 4 r=*(M, cos k6 + Ny sin k6)].
k=0

124. Application to flow of heat. Consider heat flowing in a
medium. Let 7 be any region of the medium, let S be the bound-
ary surface of T, where S is the geometric surface and not a physi-
cal one, and let 6 be the temperature at any point of the medium.
Then by Newton’s law the amount of heat which flows in the time
dt across an element dS is do

—k in ds dt, ' (1)

where g—q is the rate of change of 6 along the outwardly drawn
~dn
normal to dS, and k is a constant, the conductivity of the medium.

If -3—9 is negative, the element (1) is positive and heat flows out;
n f

if g—l’i is positive, heat flows in. The total amount of heat flowizy
n

across S is, then, the surface integral

a8
—kdtf = as

()]
which, by § 35, is the same as

—kdtff(—cosa-i—a co sﬁ-{———cos'y)ds

which again, by §79 is equal to the volume integral’

raf[f(2 0 e @

taken over T.
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Now consider an element dx dy dz of T. The amount of heat in
this element at a given time ¢ is

epl da dy dz,
where ¢ is the specific heat and p is the density of the medium.
After an interval-d¢ the amount of heat in the element is

@+£@a@&

and therefore the loss of heat in the element is

—¢p %@ dt dx dy dz,
and the total loss of heat is

—m@ﬂfgm@a @)
taken over T. K

Assuming that no heat is generated or destroyed in T, the
expression (8) must equal (2), since the Ioss of heat inside is
.caused by the flow out across the surface. “Hence, equatmg (2)
and (3), canceling dt, and transposing, we have .

0% 320 0% ., 00
fff( Bz — R at)d:r:dyolz—() 4

where, for convenience, h2 is put for the constanf —];

Now equation (4) is true for any region T whatever. Hgarxce
the integrand must vanish at each point, for if it did not we could
take a region T in which it would be always positive or always
negatlve (assuming continuity of the functions involved), and.
then the integral could not be zero.

Therefore we have as a fundamental equation for. the fow of
heat. 520 + a 0 + 620 _ h2 -d'q (5)
oz " ot 9 At
If the ﬂow 1s steady, that s, mdependent of the time, then
: 60

7 0, and we have the Laplace equation
0%0 0%0 0%
ox? +8y2+32 , . )
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If, in addition, the ﬂo\w takes place in planes parallel to X0 Y,

0 is indepéndent of 2, g—g— =0, and we have

0%0 3’0
2+ M-

the equation of the last section.

‘We shall solve this equation for the special problem in which
heat flows in a rectangular plate of breadth = and of infinite
length, the end being kept at the temperature unity and the long
edges at the temperature zero. :

If we take the end of the plate as the axes of x and one of the
long edges as the axis of ¥, we have to solve (7) subject to the

conditions =0 "when =0, ®),
0=0 when xz=m, )]
=1 when y=0, (10)
=0 when y= oo, (11)

the last condltlon (11) being mtroduced frem the nature of the
problem. *

We pick up the solution (7), §128, with V replaced by 6, and
endeavor to determine the constants. Condition (11) shows at
once that there can be no terms involving e"’{.~ Hence 4, =0 and
B; = 0. Using condition (8), we have

k= c0
0= 2 Mye™"v
e
for all values of y. Hence M, = 0 for all values of &. Our solution
"then reduces to b=
0 :}:N e " sin kax, a2y
k=0
which satisfies 8), (9),‘and (11). It remains to satisfy condition
¢10), which gives k= ’
1= ZNk sin kz (13)

to be vahid for 0 < = < .

But this is a Fourier series for the expan%xon of 1, so that to
qbtam the coefficient we need to expand 1 in a sine series valid
between 0 and 7 by the method of §122. This gives

=£<sin.x+1.:,in3x+-]5sin5x+--->./. (14)
™ _3 5 '
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By comparison of (13) and (14) it appears that
Nj = k—41? when k is odd, N, = 0 when £ is even,
and hence the solution is shown to be
=%<e“”sﬁlx+%e‘3”sin3x+—;~e”5”sin 52+ -- ) (15)

We have shown that (15) is a solution of the differential equa-
tion (7) which satisfies conditions (8) to (11). We have not shown
that it is the only solution. That question must be postponed.

126. The Laplace equation in three variables. The Laplace equa-
tion in (z, y, 2) codrdinates is

82V 0%V 8’2
-2 + Ea + D

We have already seen that this equation occurs in the flow of
heat, and it occurs also in many other physical problems.
If (z, y, #) are replaced by cylindrical coordinates, (1) becomes

°V 10V  19°V . o*V

e teaEt e =0 ®
if (z, ¥, z) are replaced by polar coi:';rdinates, (1) becomes
aV 4 s, OV
—|— 8¢2+C t ¢ = ¢+csc —9—55—0. (3)
We shall first consider equation (2) and attempt to solve it by
placing V = ROZ, 4)

where R is a function of r only, O is a function of 8 only, and Z is
a function of z only. By substitution and elementary reductions

(2) becomes ;1 ;2 1d°R 1drR 1 d%0

ZdE " Rd® rRdr 70 ©)

By hypothesis Z is a function of z only, and by (5) a change in
1d°z . . .
z does not change — 7 42 since it does not change the right-hand
2

1d*z .
member of. (5). Hence 737 reduces to a constant, and we write

1d*z :
7 aE Z; (6)

whence Z = cie¥ - cae7 k2, )
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Now from (5) and (6) we have

r?d?R r dR 2.2 1 d*0

Cr=as ALl ¥ ®
from which it follows that each member of (8) is a constant, which
we take as m%. We have, accordingly,

d’*0 2
de? ~ —m6; 9
whence 0= C_; cos m0 +-c4 sin m#, (10)
2
and d R .+ T — + (k*r? —m>R = 0. (11)

In (11) we place kr = z, and (11) becomes

dz . '
x? ——I—B >+ x — + (x2 — m2)R =0, (12)

which is a Bessel equation, so that
R = ¢5J,,.(x) + e - ,n() = ¢5Jn(kr) 4+ coJ_m(kr) (13)

if m is fractional, or .
R = c5J p(kr) + coK (kr) (4
if m is integral.

Any of these values of R, ©, and Z substituted in (4) gives a
solution V, and the sum of any number of such solutions is also
a solution. In particular, let us assume k as a fixed constant and,
letting m assume positive values, write the series

m=
V= 2 [Oke(Am cos ml + Bm sin 'ﬂ‘l,o)
m =0

+ e-~kz(Cm cos ma +Dm Sin ma)]Jm (k'f)- (15)

The sum of a finite number of terms of this series is a solution
of (2), and we shall assume without proof that the limit of this
sum as 1 increases is also a solution.

Consider next equation (3) under the assumption that the
solution V is known to be symmetric about 0Z. Thep V is inde-

~

pendent of 8, and hence %g = (. We have the equation
)

’V 20V  10°V  cotgcV

T e 7¢? T o =0 (i6)
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Place ' V =R, a7

where R is a function of r only and ® a function of ¢ only. Pro-
ceeding as in the other case, we have eventually the two equations
d2R dR

S 2r - — kR =0, (18)

2
%d_)ﬁ t ¢+k2<1> 0, - 19)

where k is any constant.
Equation (18) may be solved by the method of §107, with the

result , Y rens .
R=or ¥t VA iV . (20)
It will then be convenient to replace k by m, where
—3+Vir+ L
Then (20) becomes R =c¢y™ + 7%—17 (21) .
T
and (19) becomes
Ly )& = 0. (@2
d¢2+ ¢d¢+m(m+ ) (22)
In this equation place ¢ = cos ¢, and it becomes
(1—t2)——————2td + mim + 1)® = (23)

di®
a Legendre equation. If m is taken as a positive integer, (23) is
solved by the Legendre polynomial

®=P,(t) = Pn(cos ¢). (24)

By combining the solutions thus obtained we have for (16) a
solution _ Mmoo
V= E < mT ’+ m+1>Pm(COS ¢) . ( 5)
m=0
An application of this result will be shown in the next section.
126. Appljcation to potential. ILet a particle of matter of mass m
be at the point (a, b, ¢). Then the gravitational potential at
(x, ¥, 2) due to the mass m is
m

V-2t -0+ -0
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Consider now any solid T of density p. Th en p da db de = din,
the muss of an element of volume da db de. F'ho potential V due
Lo the mass is the sum of the petentials of the ;_-’ni‘v:ztiual partiies

and s f,u« viltime integral

/ p da db de
17 o= S
JJJ \/(x~—a) + (-~ D)= - 1

taken throughout 7. If (x, ¢, 2) is not inside 7', the integral is
contimweus in 7" and may be differentinted under the integral
sign.

it is not. difficult in this way to show that

‘N

i 1B
Lo Loy
5 =

2 N2y ~2q
oV 0 v ¢ z/'
M ANRind =0, 9
022 T oy’ + 02 )

so that the potential function satisfies Laplace’s equation.

Let us apply this to the problem of finding the potential at any
point, due to a cireular ring of small eross section and of radius «,
Iying in the plane X0OY with center at 0. Since the solution is
obviously symmetric about 0Z, we will replace (x, %, 2) by polar
lo0rdinates and use the solution

MR

V= X { A ) Pateos 6, (3)
w=0N

found in the previous section. The problem is to determine the

coeflicients. This may be done by noticing that any point @ on

0Z is at the same distance Va? -+ 72 from all points of the ring

where 0@ == 7, the diraensions of the ring being negligible. Hence

the potential at @ is M

\/(;: -+ r‘: *)

where M is the total mass of the ring.
Now (4) may be expanded by the binomial theorem into the
convergent series

f-’g(l— 1T~ +1 ‘31___ > when r <a, (5

2a® -4 qf
and into the convergent series

M ta® 1-3a :
(:-—-5;5—%2.4;3——---) when r > a. (6;

»
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The general solution (3) must reduce to (5) or (6) for a point
on 0Z. For such a point @, we have ¢ = 0, P,,(cos ¢) = P,,(1) =1,
and (3) becomes m=w B, \

Vv =m§0<Amr + rm-H}’
which must be either (5) or (6). Henceif r < @, B,,=0, and A,,
are the coefficients in (8); if r > a, 4,, =0, and B,, are the co-
efficients of (6). Hence we have the solution

2
V= M [Po(cos P) — —1— — Pa(cos ¢) + ; 2 — Pa(cos ¢) — ]

when r < a, and the solutlon
3 1-3

M 1
= ;[ Po(cos ¢) — - PO(POS ¢) + 347

Wl S

P4(cos @) — - - ]

when r > a.

127. Harmonic funcuons A function V(z, ) which, together
with its derivatives of the first and second order, is continuous,
except for definite points called singularities, and which satisfies
the Laplace equation 3? voootv

57 T 57 =0 M
is a harmonic function in the plane. We have shown in § 73 that
if C is the boundary of a region in which V has no singularities,

dV
% ds = 0. @)
Similarly, a function V(x, ¥, 2) which satisfies the Laplace
equation 02 V 82 ‘7 82 V

together with the same condltlons as to continuity, is a harmonic
function in space. We have shown in § 79 that if S is the boundary
of a region in which V has no singularities, then

f V45 =0, @)

an
. S

From equations (2) and (4) certain important properties of
harmonic funetions may be deduced which are similar in the plane
and in space. We shall consider the case for the plane, leaving for

“the student the similar case in spaee,
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We shall apply (2) to a circle of radius r and center A. Here

av = %L:, ds = r df, and (2) becomes

an trov ’
fo ~-df =0, (5)

since r, being constant in the integration, may be divided out.
Let (5) be multiplied by dr and the result be integrated between
r = 0 and r = a. Then we have

21r 27 a
fdrf i”—’aua«f def Y =0, ©)
which gives (J/’a — Vo)df =0, @)
0 .

where V, is the value of V when r = a and in general depends upon
8, and V is the value of V; at the point A and is independent of 6.
Hence (7) may be written .

2 Vo =f V. do,
0

or Vo= V., (8)
_ 1 27
where Vo=— V.do
2o

and is the average value of V on the circumference of radius a.
Hence we have our first theorem :

I. The average value of a harmonic function on the circumference
of a cirele im which it has no singularities vs equal to its value at the
eenter of the circle.

This theorem is made valid in space by replacing the circle by
a sphere. The proof is left to the student.
From this we may deduce the following theorems, which are
.so stated as to be valid in either two or three dimensions :

II. A harmonic funclion without singularities in a given region
cannot have a maximum value or a mintmum value in the region.

To prove this let us suppose for a moment that V has a maxi-
mum value Vo at a point A. Then we may draw a“small circle
around A such that V, > V, for all points on this circle. Then

— 1

2 2m
= — Vd0<——-f Vodd, or V, < V,,
2m.Jy
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which contradlcts theorem 1. Hence V cannot have a maximum
valve in the region, and in a similar manner it cannot have a
minimum value there.

it follows that the maximum and minimum Valucs of V must
occur on the boundary of the region. Henee if the value of V is
constant on the Dboundary, its maximum and minimum values
coincide, and the function is constant Thls nges us the followmg
theorem :

II. A harmonic function wzth no singularities within a region
and with constant wlues on the boundary of the region ©s constant
throughout.

Suppose now we have two harmonic functions V; and Vs which
have the same values on the boundary of a closed region. Then-

— V3 is a harmonic function which is zero on the boundary
and hence, by theerem III, is zero throughout. Hence we have
the following theorem : .

IV. Two harmonic functions which have iqentical values upon a
closed contour and have no singularities within the contour are identi-
cal throughout the region bounded by the contour.

. One practical result of this theorem is that if a solutlon of
Laplace s equation has been found by the empirical methods of
the previous sections so as to take assigned values on a c]osed
boundary, no other solution is possible.

Let us now in (2), §79 (written for twd dimensions), place
G = F =V, where V is a harmonic function. We get

Jraa-fl1G)+ G e o

If — = () along a contour C, and V is a,real functxon of zand g,
d" oV v
we must have — ™ =0, — (’) =0; thatis, V is a constant. Hence

we have the theorem:
. V. If the normal derivative of a harmonic function is zero along a
closed comtour within which. the function has mo singularities, the
function is constant.

From this follows the theorem :

VI If two harmonic functions have the same mormal dertvalive
along a closed contour within which they have no singularities, they
differ at most by an additive constant.
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" Applied to the flow of heat, theorems 1V and VI are almost
immediately evident. One says that the temperature within a
closed region is fully determined by the temperature on the
boundary, and the other says that except for an additive con-
stant the temperature inside 2 region is determined by the rate
of flow across the boundary. ' !

EXERCISES

Solve the following equations: +

. 0% . 0z 0z
1. — =a%. 8 — 4+ —=1.
ox? or Oy -
©7 ox? ox T YT
o% oz C 0z 0z
3. — - ———:O, .2 _ o ——— == 2.
7 10. 200 T2y, =2
0% oz > o0z - 0z
4, — =3 -——+22=0. 11. —— - —_— Y -
ox? " (= +2) oy e+ w) oz YT
9% oz 0z oz ‘
5, — +2—+2=0. 12. & — —==2Z.
3x2+ 3x+ . ”a.ﬁya
0% oz o0z
8. — =2-4¥. 18. y — —x—=1.
ox? ty Yo 'xay {
0% - oz | oz
7. —=ax%2% 14. zz — 2 — = 2Y.
ox? vy v é)x+y76y 7y

15. Show that a —Z—z +b % =71 is an equation satisfied by all cylinders

the elements of which are parallel to a fixed directicn.

16. Show that (x — a) gf + (y— b) % =z - ¢ is the differential equa-
tion of all cones the vertices of which are at a fixed point.

17. Show that x —g—g +y % =0 is the differential equation of sur-
. Ox Y .
faces generated by lines parallel to a fixed plane and intersecting a
fixed normal to that plane.
18. Show that z —% -y -z—i = ( is the differential equation of surfaces
of revolution with OZ as axis.
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rs

0z
19. Show that in eylindrical coérdinates 6 7297 is a differential
equation of surfaces the characteristics of which are helices.
20. Show that 2 xy ? + (y? —2d -gf = () is the differential equation
x Y

of certain surfaces the characteristics of which are circles in parallel
planes.

Expand the following functions into Fourier series.in the interval
(—m, m):

21. f(x) = . 22. f(z) = 22 28. f(x) = 28,
24. f(x) =0 when — 7 <x <0, f(x)=m when 0 <z < 7.

25. f(x) =-—2x when — 71 <xr <90, f(x)=0 when 0 <z <.
26. f(x) =—m when — 7 <x <0, f(x)y=x when 0 <x <.

97. f(x) =0 when — 7w <2 <0, f()=2° when 0 <x <.

Expand the following funcmom inte Fourier series in the interval
©, 2 r):

28. f(z) = r. 29. f(x) = z% 80. f(x) = x8.

31. f(x) = 1when0 <z <m f(x)=0 when " <z < 2.

32. f(x) =x when 0 <z <m, flx) =27 —2 when " <2 < 2.

83. Expand f{x) = 1 inte a sine series in the interval (0, 7).

84. Expand f(x) = x into a cosine series in the interval (0, =).

85. Expand f(z) = z? into a sine series in the interval (0, 7).

36. Expand f(x) = sin x into a cosine series in the interval (0, 7).

87. Expand f(x) = cos x into a sine series in the interval (0, ).

38. Solve equation (5), § 124, under the assumption that the flow is
steady and takes place radially outward from the center of a sphere.

89. Solve equation (5), § 124, under the assumption that the flow of
heat is steady and takes place radially outward from the axis of a
cylinder. .

2 2,
40. Find a particular solution of the equation _d_y_ 8

2
41. Find a particular solution of the equation 8:1:
- 2 2
ox® oy az

42. Find the temperature for a steady flow of heat in a semicircular

plate of radius 1, the circumference being kept at a temperature 1 and
the diameter at 2 temperature 0.
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48. If a slab of thickness ¢ is originally at a temperature unity
throughout and both sides are then kept at a temperature zero, find
the temperature at any point of the slab, the slab being so large that
ouly the flow normal to its faces need be considered.

44. Find the temperature for a steady flow of heat in a circular plate
of radius 1 if half the circumference is kept 2t a temperature 0 and the
other half at a temperature 1.

45. Solve the equation

80_h29 0—b”6
ot ox?

which is that fer the flow of heat in a long rod with radiating surfaces,
assuming that when ¢t =0, § = f(x).

46. A vibrating string may be shown to satisfy the equation
P _ Oy
ozt o
where  and y are the codrdinates of a point on the string and { is time.

Selve the equation if at a time ¢ = 0 the string has a position y = f(x).
Take the length of the string as ! and assume that the ends are fixed.

47. An oscillating chain hanging vertically may be shown to satisfy
the equation oy % oy

Tz == s —a g

where (z, y¥) are the coordinates of a point on the chain, ! is its length,
and ¢ is time. Find a possible solution.

48. A cross section of the surface of a wave in a bay satisfies the
equation 9% g @ 6y
. 2 b é)x( 3:0)
where b is the breadth of the bay, % is its depth, x is a horizontal axis

running out to sea, and y is a vertical axis. Find a solution, assuming
h = constant and b = kz.

49. Solve Ex. 48, assuming b = constant and h = kx.

50. Find the potential due to 2 homogeneous circular disk of radius
a and mass M, first finding by ordinary integration the potential due
to the disk at any point of a line perpendicular to the disk at its center.

51. Show that equation (8), §125, has a solution of the fofm
n=o m 00 /

V= S‘ (A,,r * ok ————>(am cos mG + b, sin m8) P,™(cos ),

=0 m==(

where P,™ is an associated Legendre function.
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52. Show that the equation

oV 2PV
w5+t V=0
ox o’

has a solution in polar codrdinates of the form
n=on
V= E (@n €08 RO -+ by, sin n)J, ().
n= :

53 Show that the equation

oV BV GV
- V 0
P + — o 5 + e +
has a solution in polar coﬁrdmates of the form
3 m=o n=cc
V= 2 2 T"i'JM;(")(Am cos mb.+ B, sin mf) P,™(cos ¢).

m=0 n=0 .
54. State and prove for space the theorems of §127.
,55. Diseuss the solution of equatxon (1), § 128, which is obtai_nea by
placing k£ = 0 in (4), § 128.
56. Discuss the solution of equation (2), § 125, under the three
hypotheses (1) k=0, m+0; k=0, m=0; B) k=0, m=0.
57. Show that equation (5), § 124, when heat flow takes place in one
¥
direction, has solutions of- the form f#=qaxr -+ b, O@=sinkxe "",
K .
—-=t
f=coskze *,or linear combinations of these.
58. Use the results of Ex. 57 to show that

n=w < _An'lr"
0=142+20+ 5 22 gin 2072 ¢y
/ 1 nw

gives the temperature in a bar of length 5 em. under the hypotheses
that when t=90, =102+ 30; when =0, 6 =203; and when
z=2>5, § =90° This may be brought about by first estabhshmg a
steady flow of heat so that § = 10 z + 30, and then syddenly giving 2
temperature of 20° to one end of the bar and a temperature of '90° to-
the other end, and maintaining these temperatures.

59. The ends of a rod of length 40 em. are kept at temperatures of 0°
and 80° respectively until the steady state is reached, .The temperature
of the end which has been 80° is suddenly reduced to 40° and held so
while the temperature of the other ermd is unchanged. Show that the
temperature in the rod is given by

k=00 k
_80 2 -1 s kmx

.l
in - ¢ 1604
T ke1 k

0==x




CHAPTER XIV

CALCULUS OF VARIATIONS
128. The simplest case. Consider the integral

b / dy
-2 \d: )
j; f\(% Y, dx>dx 1

taken along a curve Y = ¢(x) 2)

connecting two points A and B in the plane (Fig. 101). The value
of the integral depends in general upon the curve, and we wish
to determine the effect of varying the curve and, in particular,
to find the curve which makes the v ]
value of the integral a maximum or a
minimum. For that purpose we will
call the curve (2) the original curve
C, and the curve

Y = ¢(x) + n(x) 3)
the varied curve C’. Then (@)
Y — y=nx), Fic. 101

represented by QP, is the variation of y and will be denoted by 5y,
so that (3) becomes Y =y + 6y. )

) dy ! A 6%?: r v/ m
Denote I by ¥’ and i by Y’. Then, by (3),

d
Y=y +n'@) =y + - (0y). ()
axr

We shall call n’(z) the variation of 3’ and denote it by 8y’. It
follows from (5) that

d
oy’ = o (0y), . (6)

. . dy’ d
or, otherwise written, 6< dm} = (8y),
a formula which shows the allowable interchange of d and 6.
We shall assume that the quantities dy and éy’ are both small;
that is, that the height and the slope of the curve C’ at any point
S17
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differ very little from the height and the slope of the curve C at
the corresponding point.

Consider now the function f(x, ¥, ¥’) for any point of the curve
C. For the corresponding point of C’ the function becomes

0
fx, y+ oy, 'y’ +0y') =f(z, 4, ¥) +3 / 3y + af, o'+ -,

the expansion being made by Taylor’s series. We shall call the
sum of the terms of first order in dy and &y’ the first variation of f
and denote it by d8f, so that we have

o= f v+ f @®

Let I be the value of the mtegral (1) along the curve C. Its
value along the varied curve €’ is found by replacing f(z, ¥, ¥') by
f(x, y + 8y, ¥’ + 0y’). We shall call that part of the change in the
integral which contains only terms of the first order in dy and 6y’
the first variation of the integral and denote it by 1.

Then, by (8), 6I= <8f Sy - gi, 5y'> dr. 9
Consider the second part of the mtegrdl in (9). By (6) we have

fa"s' '”fa d.z:( v)dz,

and by integration by parts

oo (o] [ 27
P = 0y’ dac—-[a - 0y Tr dy dx.

But since the points A and B are not changed, 6y = 0 when
z=a and z = b, so that

b of d ( gf)
a,&ydx——fdx Y ) sy da. (10)
Substituting this value in (9), we have

. az-—f [55'&5(&11”5 dz. (11)

This, then, is the change in I as far as the first order of infini-
tesimals 8y and 8y’ is concerned.

Now if 8y and 8y’ are sufficiently small, it is obvious that the
sign of the exact change in I will be determined by the sign of
61, since the terms 6y, &y’2, 8y 0y’, ete. are of higher order than
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dy (there is no difficulty in making such variations that &y’ is of
the same order as d8y).

Hence if 67 is positive or negative for a certain variation &y,
its sign would be reversed for a variation —d&y. In that case I
would be increased by one variation and decreased by another.
From this it follows that if I is to have a maximum or a mini-
mum value along the curve C, it is necessary that

6I=0 (12)
for all possible small variations 6.

From this it follows that the coefficient of dy in (11) should
be zero at all points of the curve. For if this expression were not
zero we might so vary the curve C that dy should have the same
sign as its coefficient, and then 81 would be positive, in contra-
diction to (12). Hence we have established the theorem:

If I has a maximum or a minimum value along a curve C, tha!
curve must be a solution of the differential equation

of d [of\
d (ﬁy'>“°‘ 13)

In formula (13) the partial derivatives indicate merely formal
operations under the assumption that z, y, and y’ are independent

. . d .
variables. The operation 7 however, takes into aceount that

y and y’ are functions of 2. Hence (13) may be transformed into

‘ 2 2 32
op_ 07 _ 94 y’—,d,,f2y”=0. (14)
oy oxoy oy oy 0y

This is an equation of the second order to determine . The
solution contains two arbitrary constants, and it is necessary, if
possible, so to determine these that the curve shall pass through
the given points 4 and B.

When this has been done we can assert that if the integral has
a maximum or a minimum value, it must be obtained along this
curve. The question as to whether the maximum or the minimum
value actually exists, and if so which one it is, is still unanswered.
In mathematical language, we have determined a necessary but
not a suffictent conditien. The determination of the sufficiency of
the condition is a matter of too great complexity for this text.
In pracetical problems the question can often be decided from the
nature of the problem.
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Asan examp]e of the method, consider the problem of finding the

curve between given points A and B-which, by revolution about

'0X, generates the surface of least area. By elementary calculus
the area in question is g:ven by

b -
S=2r yds=21f Yy V14-y2dzx.

‘ of of vy
=y~ l ’2 2=~/ I /2 Y ——ee
Ther.fore equation (18) is *

—~ d vy’ -
ViTvi -5 (G L) =o,

which reduces to 1492 —yy' = 0 (15)

as the form which (14) takes. dp
To integrate (15), place y’ =pand y”' = p E—' The equation is

then pdp _ _‘_iﬁ .
14+9* 9y’

whenee, finally, y = ¢ cosh ?——-‘;——2: (16)
1

the equation of the catenary. The constants ¢; and ¢2 must now
be determined so that the curve (16). passes through A and B.
The quesflon as to whether this is possible and whether, if so,
there is a maximum or a minimum will not be considered. here ;
1‘( zca physically evident that in many cases the solution exists.

0. Solution by differentials. We y Bt
M worite ' Q
e yoyde = @, y, dr, dy) (1) C
S consider the integrad A= P
{"d’f)
x, ¥, dr, dy) 2
Sy E® ) 2 o1 L_x
along a curve between fixed points Fig. 102 -
A and B.

In the varied curve the point P may be mnsuiered displaced
io Q so that x and y take each a variation (Fig. 102). Hence if
(x, yﬁ are the cotrdinates of P, and (X, Y) those of @,

X =2+ 8z, Y=y+0y; 3)
whence dX = dx + d(dz), dY = dy + d{dy),
and therefore  d(dx) = d(dx), o(dy) = d(dy): @
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T,-heg, asin § 128,

¢

b6="2s +34’

and 51 = L ) 50, ©6)

where in (5) the partial derivatives are to be taken on the hypothe-
sis that x, y, dz, dy are independent variables.

In (5) replace 6(dx) and &(dy) by their values as given by
(4), and integrate by parts the corresponding terms of (6).
There results
! oo 0o (B)
ol [a(dx) s+ 500070

(28~ a2 o+ {22 o o}
d ox +|— Syr. (7
+f 5w =t~ Gl @
Since by hypothesis éz and 61/ are zero at A and B the duantity
in the first pair of brackets vanishes. Arguing then as in §128,

we can' easily see that for maximum or minimum values of I we
‘'must have each of the following relations satisfied :

26 [ 96\ _ o
o d(a(dx)) =0, ®)
5(;6 7203

Y <a<dy>) 0. ®

As = matter of facl, we have here onf relation and not twe,
for it is possnble {0 show that each of th Laquations (8) and (9) is
equivajent to (12} of §128. This may beiJone as follows: From (1)

99 _ 91

ox = 5 O

0 _ o

ay-—aydx,

0 _, W o d
san Yo an T T a

o _of o . _ o
B(du) By 2(dy) oy
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Substituting these values in (8), we have

Y e -az<f~ﬁ >=o,

ox oy’
of of of of <9f> ,_of ,]_
adx [3 d+ d +8’ doy ay,dy =0,
A Bf <3f>___
which is dy dy—d o) dx 0.

Dividing by dy, we have (13) of §128.
Again, substituting in (9), we have

P A
5 &= d(5,)=0

and dividing by dx, we have again (13), §128.
The two equations (8) and (9), while not giving a new condition,
give us two new forms, one of which may be more convenient than

the other or than (13), §128.
For example, consider again the integral used in §128 written

in the form
f Yy Vdax? 4 dy2.

¢ Equation (8) is now

0— d( ydz ) =0
Vdz? + dy? ’
. y dy
and (9) is Vdx2 + dy? — d(m) =

The first of these is the simpler and gives at once

__ydz .
Vdzx? + dy? b
 dy = dz,

whence —_——
\ /y2 — 612

X '— C2
and - Y = ¢1 cosh

C1

2

as before. "
An application to the determination of geodesics on a surface is
of interest. Let the equation of a surface be

z=fu,v), y=f(u,v), z = f(u, v), (10)
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where (u, v) are curvilinear cotrdinates on the surface. The length
of any space curve is

s=f\fdx2+dy2+dz2;

and if the curve lies on the surface (10), dz, dy, dz may be replaced
by their values obtained from (10), so that

s:f\/Eduz—{-Zqu,dv—i—dez, 1)

where E, F, G are as in §53.
The lines which make the first variation of this integral vanish
are by definition the geodesics on the surface. They will be the lines
of shortest length between two points not too far remote.
130. Variable limits. We will now suppose that the points
A and B, which were held fixed in §§128 and 129, are allowed to
vary along two fixed curves L; and L y
(Fig. 103). That is, we ask what curve
C, the extremities of which lie anywhere
on L; and Lz, will make the integral

[ o v, e, )

a maximum or a minimum. 9] X
In the first place, it is evident that

that curve must satisfy equations (8)

and (9) of §129, for among all the curves which may be drawn

between L; and L2 are the curves which leave A and B fixed.
The variation (7) of §129 therefore becomes

Fig. 103

i 0 od (B)
51:[,” o 4 5] :
o(dx) T ey Y

and since this must vanish we have the condition

o¢ 0$
3y T o =0 @
to be satisfied at each end of the curve C.

In (1) dx and dy are determined by the direction of C, and ox
and dy are determined by the direction of L, or Lo, as the case
may be. Hence (1) gives a relation between the direction of C
and that of L, and L» st the points where C intersects L; and Lg.
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As an example, consider the problem of finding the shortest dis-
tance between any two curves L; and L;. We are to minimize the

integral ,
f Vdz2? 4 dy2. 2)
Equation (8) of §129 becomes
% _)
Vdx? + dy? 7
the solution of which is ¥y = c12 + ¢». (3)

Equation (1) reduces to
dx 6x + dy oy = 0,

which says that the straight line (3) must cut the curves I.; and Lo
at right angles.

Hence if the shortest distance exists, that distance will be the
length of the straight line cutting both curves at right angles.
Nothing in our work, however, proves that any straight line
which satisfies these conditions is a
solution of the problem. A simple ex-
ample will show this. Consider two
circles »tangent internally (Fig. 104).
The line ABC is the only line perpen- 4
dicular to both circles, but neither the B ¢
segment AB nor the segment BC is
the shortest distance between the two
circles. We may, of course, consider
the zero segment CC as a piece of the Fic. 104
straight line ABC.

131, Constrained variation. Let it be required to make the

integral

1=[ ¢y, ds, dy) M
a maximum or a minimum while keeping the integral

7= (v v, do, dy) @
equal to a constant a. Accerding to our previous discussion we
must have 51 =0 (3)

but are now to admit only variations éx, éy. 6(dx), and d(dy) for
which 8J =0, (4)
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since J is not to change its value. But if (3) and (4) are satisfied,
it is necessary (though not sufficient) that

81 4+ N6J =0, (5)
where \ is any constant multiplier; that is, the integral

TN = f [6(z, , dz, dy) + N (=, 7, dz, dy)]

must have its first variation equal to zero.
Let us suppose curves

f(xy Y, €1, C2, x) =0 (6)

found which satisfy condition (5). The equation contains three
arbitrary constants, two of which may in general be used to pass
the curve through the two fixed points A and B, and the third may
be so determined that the integral J takes the prescribed value a.

We then have a curve which satisfies equation (5) and gives J
the required value. If the curve is then so varied that J does not
change, condition (4) is satisfied and hence, by virtue of (5),
condition (3) is fulfilled. The problem is therefore solved.

As an example, let us find the curve of given length which will
inclose the maximum area.

We have to make Az—%f(x dy — y dx)

a maximum while keeping
—f\/ dx? + dy? = a,

where a is a given constant. Without loss of generality we assume
that the curve starts and returns to O and is tangent to OX at
that point. We consider the integral

f[%(x dy — y dz) + AVdx? + dy?]

and, applying to it equation (8), §129, have

d d < Adx )
2% + Vi 1 dg
VNE —(y —
whence gl_y = (y = c)” s
dx Yy —C

the solution of which is (x —¢2)24 (y —e¢1)2 = N2
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By the eonditions imposed upon the eurve, ¢; = 0'and A =+ ca.
The solution is thg circle -

e+ (y — c2)? = ¢’

and c¢2 can obviously be so determined that the circle has the
required length.

, 182. Any number of variables. The discussion and results of
" $§128 to 131 are easily extended to any number of variables. If

we have the integral

I =ff(xlv X2y ***y Ly 1351’, x2,1 RS xn,)dtr G-)
dx; - dx,z , dz,
where 2’ = = 2o’ == R Zn T we have, by the meth-
ods of §128, as’ the duﬁeremlal equations-of the curves for which
0I=0, o _d ( 8f> 0
axﬂ dt 8x1 -
o i(.?f.) -0
Oxe  dt\oxs') V)
o _ 1( o ) N
or, dt\oz,’
If the integral is written as
1= [ $lan, 2, ta, daty, o, -, dta), @
. o¢ < do )
the t; ok
equations are o d B (dan) 0,
¢ ( 69 )
Paieafy d A
aﬂfhz 3(dx2) 0 (4)
f?f?i_' 3¢ )
Oxp d(a(d:c,.) 0,

of which one is in general superfluous. The conditions for vari-
able limits and constrained maxima and minima are sufficiently
obvious from §§130 and 131.

+ In addition to the problem of constramed maxima-and minimay
as discussed in §131, we may have the problem of rendering the
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integral (3) a maximum or a minimum under the condition that
the variables are connected by the cendition

F(x1, a2, <, p) = 0. (5)
The variations 8z; are then bound by the condition obtained
from (5) P +
¢ OF OF
Fr. 6x1+—a-———5x2+ +5a;517n=0; | (6)

and, in addition, we have, as in §129,

70~ Azt oo+ -+ 7~ o5 [oen =

[ax, Nowan) 12+ How, ~ Now@ey) [%5=0 D
for all variations consistent with (6). From (6) and (7), using A
as an undetermined multiplier, we have

f=n a¢ ad) _
2o (i) M o= ®

Hence if A is so determined that the coefficient of one of the
variations éz; in (8) vanishes, the other coefficients must also
vanish, since in (6) all but one of the variations are arbitrary.
Therefore the equations to determine A and the required curve are

09 < oo ) .
e d Pz + )\ 239:, =0. (=12---,m) €)]
For example, let it be required to find the shortest lines (geo-
desics) on any surface Fx, y, 2) = 0. (10)

This is to minimize the integral

= f Vdz2 —l— dy? + dz2 L (11)

subject to the condition (10). Usmg formulas (9), we have

dx oF
Ut w "

dy oF -
- 2o, 12
¢ dx2+dy’+dz2+>‘r9y ‘ a2
dz dF
—_—d A —=0.
and d Vdz2? 4 dy? + dz? + 0z
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We inay draw from equations (12) the result

G
ds/ " \ds ds)  ox oy oz

ds? * ds? ds 6y oz’
whence we infer the important theorem that the principal normal
of a geodesic coincides with the normal to the surface.

133. Hamilton’s principle ; Lagrange’s equations. Consider a par-
ticle of mass m; moving along a curve under the influence of a
force whose components are X;, Y;, Z;. Then the path is deter-
mined by the equations '

2 2 2
mi%’-’-xi, m; (i,:;1= Yy mi%;‘l

Let the curve be varied without changing its extremities and
let 8z, 8y, 0z; be the variations of x;, ¥;, 2; respectively. By virtue
of (1),

d2 . dZ?}i d221'
(m, dt >6$, + < dt2 — Y;)éy,- -+ <m,~ dt2 — Z,-)&z,— =0. (2)

This is true for each of the particles of a system, and, summing
over the whole number of particles, we have

= Lig. (1)

dt2 dz2 dt2
The work done by this displacement is
OW =3, (X2 + Yidy: + Z:02:). @)

The kinetic energy of the system is

L (22 (A (42
T”’zz [(dt>+<dt &) |
\and the variation of Tis

dx;  (dx:\ | dy, (@_.) dz; <9’ﬁ>]
0T = Em.[ 8( )+ d += 8=

dz; d

dz: d dy; d
L TC e T%)

the last change being made by (7), §128.
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Now we have
) 2 2 2
i’l-[‘i“-‘la‘x,-er”‘a +dz’6,-] [dx,a +dy, l_}dzgai]

di| dt dt dt? dat? dt?
dax; d dy; d dz; d
S 2 b)) = o Gu) o o (B, ®)
so that, by virtue of (4), (5), and (6), equation (3) may be written
2 gil‘_iﬂg +dy‘5 +dz'5 i]:BT-{—BW. (D

By multiplying (7) by di and integrating between the times
t= 1o and t = ¢, at which the body is at the beginning and end of
its path we have

1 1 d 1 t‘
_} (6T—|— oW)dt = Em [dx 6.7'1+ dy oY —|——dz76 ] =10, (8
t
where the right-hand member is zero, since by hypothesis dx, dy;,
dz; are zero at the beginning and end of the path.

We shall now assume that there exists a potential energy V

such that -V

'Then equation (8) may be written

4
6£(7‘-—V)dt=0; 9

that is, the body. so moves that the time integral of the difference
between its kinetic and potential energies has a first variation zero.
This is Hamzlton’s principle.

The position of the body ,may be determined by n parameters

qi, gz, -+ +, Qn, Sometimes called generalized coordinates. Then
dx; dy; dz;
%, ¥i, 2; depend only on g;, and rgt—y —;J—t o depend on ¢; and ¢;,
. dg; .
where ¢; = élt_’ so that T in (9) is a function of ¢; and ¢, and V

is a function of gq;.
We can now apply formulas (2), §132, to (9). We have the
n equations .

B(T»'\/_)_Q[E(T-—V)]__O g
2q; al oq: |
These are Lagrange’s equations for the motion of the system.

= 1) 2; Y n) (10)
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For example, consider the motion of a pendulum of any form
swinging in a plane about a point of suspension 0. The position
of the pendulum is fully determined by the angle 8 which the line
from O to the center of gravity of the pendulum makes with the

vertical. We have then only one parameter g;, namely 6.
"~ We have, by mechanics,
T=116?
V = Mgh(l — cos 8),
where I is the moment of inertia of the pendulum about O, & the
distance from O to the center of gravity of the pendulum, and M
the mass of the pendulum. Then (10) becomes

— Mgh sin 8 — d (Ié) =0,
e %
or IW=——Mghsin0.

EXERCISES
1. Find the gquation of a straight line in Cartesian coérdinates by
minimizing the integral f m
2. Find the equation of a straight line in polar ;oﬁrdinates by mini-

mizing the integral - —
g j Vdr? 4 r2d§2.

8. Find the equation of the shortest line on the surface of a sphere
and prove that it is a great circle.

4. Show that the shortest lires on a right circular cylinder are helices.

5. Find the equation of the shortest line on a cone of revolution.

6. Find the equation of the shortest line on the helicoid x = r cos 8,
y=rsin 6, z=k0.

7. Find the differential equation of a geodesic on any surface of
revolution x = oo0s 6, y = r sin 6, z = f(r).

8. Given that the velocity of a body sliding from rest along a curve
is \/2 gh, where % is the vertical distance of the fall, find the equation
of the brachistochrone; that is, the curve in which the body falls in
least time fr05n a pbint O to a point B.

9. Determine the curve for which f vds is a minimum, assuming
that the veloeity » = V2 g(y + a).

10. Find the curve of given length between two fixed points whick
generates the minimum surface of revolution.
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11. Find a curve of given length between two fixed points such that
‘the area bounded by it, the axis of x, and two ordinates is a maximum.

12. Find a curve of given length between two fixed points such that
the area bounded by it and two lines to the origin is a maximum.

18. Assuming that a string with fixed ends will so hang that its center
of gravity has the lowest possible position, find the curve in which a
string of given length will hang.

14. Prove by Hamilton’s principle that the string in Ex. 18 will hang

- as stated.

15. Show by Hamilton’s principle that the equations in polar cotrdi-
nates for the motion of a particle in a plane are

d?r de
m['&’i& <dt>] frs

a2 _df dr] .
’"['aﬁ”a ‘Ji]zf"

where f, and fy are the components of force acting on the particle along
the radius vector and normal to it.

18. Find from Hamilton’s prmclple the polar equations for the motion
of a particle in space.

17. Show that if the integral

f f Fiz, y, 2z, p, Q)dz dy,
oz 9z . . ..
where p = P q= Ev is made a maximum or a minimum by a surface
spanned in a given closed curve, {bat surface must satisfy the equation
oF d oF d 9F

Pz dx (‘p dy ()q

18. Use Ex. 17 to show that 1 minimum surface, that is, a surface of
least area in a given contour, satisfies the partial differential equation
r(14 q%) — 2 pgs + (1 + p?) = v,
where r-*-aji s= 0% t~—2:2
ox?’ or oy’ oy*

19. Show that the only surface of revolution which satisfies the equa-
tion in Ex. 18 is that formed by revolving a catenary (except for the
trivial case of a plane formed by revolving a straight lire-about an axis
perpendicular to it)

26. A bar of length 2 L is supported horizontally by two strings of
length [ attached to its ends. Find the period of the motion of the bar,
assuming small vihretions.




CHAPTER XV
FUNCTIONS OF A COMPLEX VARIABLE

134. Complex numbers. A complex number is a quantity of the

form x4y, @
where x and y are real numbers and 7 is a unit defined by the
equation i=vV_1. @)

The number z is the real part of the complex number and the
number ¥ is the imaginary part. When y = 0 the complex num-
ber becomes a real number, so that the real numbers form a
subelass of the complex numbers; when x = 0 the complex num-
ber becomes a pure imaginary number.

The complex numbers being thus defined, it is necessary to lay
down rules for their manipulation. These are essentially two:

L A complex number (1) 18 zero when, and only when, x=0
and y = 0.

II. The complex numbers obey the ordinary laws of algebra, with
the addition that 1 =\ —1.

From these follow at once the formulas for addition, subtrac-
tion, and multiplication; namely,

(@1 4+ 1) £ (22 + 2y2) = (21 £ x2) +4(y1 £ Y2), 3)
(%1 + Y1) (X2 + ty2) = T1%e — Yiy2 + 1(@1y2 + Ta1)- 4)
The quotient of two numbers such as
z1 4 1
Z2 + Y2
may be most conveniently found by multiplying dividend and
divisor by z2 — 72, thus,
2t _ (@) (22 — ya) < BTy | Toth — Tils ®)
22+ Yz (T2t W2) (@2 — By2) w7+ Yo 222 + yo?
From (8), (4), and (5) we have the following theorem :

III. The sum, difference, product, and quotient of two complex
numbers are themselves complex numbers.
882
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If two c'omplexlnumbers are equal, that is, if

Zy + Y = 22 + 1ys,
then, from (3), (@1 — x2) +1(yr — y2) =0;

whence, from postulate I,

X1 = X2, Y1 = Ya.
That is,

IV. Two conplex numbers are equul when, and only when, the
real part of one s equal to the real part of the other and the pure
imaginary part of one is equal to the pure imaginary part of the
other. .

Two quantities which differ only in the sign of their pure
imaginary parts are called conjugate vmaginary. Thus a 4 b7 and
a — bt are conjugate imaginary.

135. Graphical representation and trigonometric form. Complex
numbers are essentially algebraic quantities, but they may be given
a convenient geometric representation. y

Construct axes of codrdinates OX and P(2)
oY (Fig. 105) and take any point P.
Then to any point P corresponds a defi- ' r
nite pair of values (x, %), and conversely.
Therefore to P may be made to corre- 9 !
spond the complex number z, where 0 5 . X

= X -} Y. . )] Fic. 105

In this connection OX is called the axis of reals, since real
numbers are represented by points upon it, and OY is called the
axis of imaginaries.

If we introduce polar coordinates

x=rcos0, y=rsin 8,
we then have, from (1),
z2=r(cos 8 + ¢ sin 0), (2)

"

which is the trigonometric form in which a complex number can
always be put. . *

The number r, which is always taken positive, is called the
modulus, or the absolute value, of z and is equal to the length of

the line OP. The ‘
: " l=r=VaTe (3)
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The angle 4 is called the angle, or argument, of z. Then

x . Y
0= — sin § = ———x- @
RV Va2 4y

If a is a real positive number, we may write
N a = a(cos 0 + 7 sin 0),
— a = a(cos 7 4+ ¢ sin ),

. A N &

at-—-a\cos-z-—f-zsmg,

. 3w .. 8«
——m—a<cos——2—+zs1n 2>,

thus expressing any real or pure imaginary number in the gen-
eral form (2) and exhibiting the modulus and the angle of each.

Any multiple of 2 m may be added to the angle 6 without alter-
ing z, since

rlcos (0 +2km) +isin(@+ 2 kmw)]=r(cos  + ¢sin 8), (5)
where k is any integer. '

Take two complex quantities z; and 22, represented by the
points P; and P: (Fig. 106) respectively. It is easy to see from
(3), §134, that their sum, z; +22,1s y
represented by the point P3, found
by constructing a parallelogram on
the sides OP; and OP;. From the Bl
figure it follows that 2

|21 + 22| = 21|+ 22], (6)

the equality sign holding only when __ £(z) x
OP, and OP; are in the same © -

B(2+2,)

straight line. Fia. 106
Since 21 —22 =21+ (—22) and |— z2|=|22|, we have also,
from (6), |21 — 22| = |21 |+ 22]. ¢

Graphically the points 22 and — z2 are symmetrically placed with
respect £o the origin, and we have for subtraction Fig. 107.
To represent multiplication and division graphically we use the
trigonometric form. Then
2122 = r1r2[cos 6, cos €2 — sin 0; sin 9.
+ ¢(sin 8; cos 62 + cos 6 sin 62)]
= 1,72{eos (01 + 02) + 7 sin (6: 4- 02)]. ®
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Hence in the multiplication of two complex numbers the moduli
are multiplied and the angles are added. Graphically, if P,
(Fig. 108) is the point 2, the point 2322 may be found by rotating
OP; in the positive direction through an angle 62 and stretch-
ing or contracting OP; until it is of length rire. In particular,
wmultiplication by ¢ may be considered as rotating OP; through

Y
Y
. B(2,2,)
B(,)
B(z)
J X
Blzrz,)
X
Ry
Fic. 107 FiG. 108

an angle of 90°, mulitiplication by — 1 as rotation through an
angle of 180°, and multiplication by — 7 as rotation through 270°,
For division we have

21 ni(cos by 42s8inby) n . . y
- = - = 3 — —02)]. (9
22 ro2(cos 02+ isin 62) T2 [eos (61 — 82) + ¢ sin (61 - 02)]- (9)

Hence in dividing one complex quantity by another the angle
of the divisor is subtracted from the angle of the dividend, and
the modulus of the dividend is divided by the modulus of the
divisor. Graphically the line OP; is rotated in a negative direc-
tion through an angle 6, and the length of OP; is divided by rs.

From (8) and (9) we have 4

L [

|z122] = |21] | 22], 'I |——= (10)

136. Powers and roots. The value of 2", where n is a.positive
integer, may be found by successive multiplication of z by itself.
If we write 2" as z + 1y, we can find (x + )" by app]ymg the
binomial theorem ; thus,

(x 4 )% = 2% — ¥* + 2z,
@+ w)® =2° — 3zy* + (B 2%y — *).
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An important form of the power is obtained by using the
trigonometric form of z. From the previous section,

2" = [r(cos 6 + ¢ sin 6)]" = r"(cos n8 + ¢ sin n0). 1)
In particular, if r = 1 we have De Moivre’s theorem (§ 26)
. (cos 6 + 7 sin 6)" = cos nf -+ 1 sin no. 23

The root 2", where n is a positive integer, is a number which
raised to the mth power gives z. From the general form of z as
given in (5), §135, it is evident from (1) that

11 0+2kw .. 0+42Fkmr
<cos T + 2 sin —T>,

.

©)

1
and we shall get n distinct values of 2" by giving to k the values
1

0,1,2, -, (n—1) successively. In this work " is to be taken
as the numerical positive root of the real positive number r.
By combining (1) and (3) we have

I
where k=0,1,2,---, (g—1).
cos0+7sin0
™ (cos mO <+ ¢ sin mf)
= r~™[cos (— mO) + ¢ sin (— mb)]. (5)
Hence formula (1) is true for any rational value of n.
We may now prove the relation which was used in obtaining
formula (5), § 70. By algebra, .
2P —1=@—r)@—r2) - (& —T3p), (6)
where 1y, 72, - - -, 72, are the roots of the equation z?? = 1. These
roots are, by (3),

2k . . 2km
cos—é—;)——f-zsm-—z-?- k=0,1,--,2p—1) @)
When k = 0, (7) gives the root r, = 1; when k = p, (7) gives the
root 7, = —1. The other roots pair off into conjugate imaginary
pairs. For when k =n, wheren=1,2,---, p—1,

3

Finally, 27" = 2_11_“ =

nw o .. N
r,.=cos—--|—-zsm~;’—,
and when k =2p —n, P

r c nr isinmr
2p—n = COS — — ~—
D Y2
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Therefore (x — r,)(x —r2p_n) =22 — 22 cos ¥ + 1. Hence we
may write (6) in the form Y

2p
z 1=<x2—-2xcdsg+1><x2-—2xcosgplr+1)---

x2—1

<x2—2xcosp—17r+l>~ 8)

Now let z — 1. The left-hand side of (8) approaches p, and
the limit of the right side is its value when z = 1. Therefore,

2w .o (p— D
= 92p—2 —_— 2 T ... 2 /T,
p= sin? 2psm 5 sin 57

Similarly, let x — — 1. Then
,2 -
p = 22777 cos? 211) cos® ?:% -+ - cos® == (P 3 pl)r
Multiply the last two results, using the formula for the double
angle, and take the square root. We then have

®—Dm,

’

.m . 27 .
p=2P"'gin —sin — - - - sin
Y

p
.2_7r...sin (p—1)1r__ p

‘whence sin = sin
v z = .
P P 271
137. The square root. Let us consider in detail the dependence
Y of w=+V2 on the value of z.
- From (3), §136, there are two
values of w; namely,
14
2
wa
5 -X l U

w, (@]
Fia. 109 &?O
9 .. 0
w1=\/;<cos§+zsm§>,
and wz=\/;<cos0+27r+isin0+227r>=—w1.

2

We may plot z on the (z, y) plane and w on the (u, v) plane,
where w = u + v (Fig. 109),
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Let z describe a curve in its plane. Then w; and w2 each de-
scribes a curve, and the two curves do not intersect unless z = 0.

If z describes a closed curve which does not go around O, @
returns to its original value, and w, and w; return each to its
original value.

If 2 goes around O, 6 changes from 6, (its original vaiue) to
8o + 2 m, w; becomes we, and wz becomes w; (Fig. 110). To make

]’

e

1’4
/o / ’ X w(ij“’ 7
+

Frc. 110

this numerically clear we give a table of values of w; corresponding
to successive values of z:

z=4, wy =2
T .. 7 . T .. T
z-—4<cos—2—+zsm~é-)-—4z, w =2 cosz—}—zst)
2 2
=-———-+1——
V2 2,
z=4(cos T+ 1sin 1) = — 4, ) w1=2<cos—72£+1sm—72[>=2i.
3w .. 38w . 3w .. 38w
z-4<cos——2—+zsm—-2—->-—.——4z, wy = (cos—4—+zsm—4—>
2,2
V2 V2
z=4(cos 2+ 2sin 2 1) =4, wy = 2(cos T+ 28in ) = — 2.

It is evident that by a passage of 2 around the origin, V/z changes
its sign. SPmilarly, by a passage of z around z = ¢, the radical
Vz—a or Va — z changes its sign. Of course, an even number
of ecircuits around z=a leaves Vz — a uichanged, and an odd
number changes its sign.

Consider Vi—-2=V1—z2V1+z
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A single circuit around either of the points + 1 or — 1 changes
the sign of V1 —22; a circuit about both of them leaves the sign
unchanged.

Now let 2z describe a path as follows: Let it start from O
(Fig. 111), go along the axis of reals to 1—r, describe then

the small semicircle around 2

1 to 147, and then pro- ‘ ,
ceed indefinitely along the axis —— ¢
of reals. What is the effect © T e
on the sign of VI —22 if at Fie. 111

the outset VI —z2=-17 To answer this question we place
l—z=1—2—1y=r(cos ¢ —1sin ¢),
where ¢ and r are as shown in Fig. 111. Then
1+ 2=2—r(cos ¢ —7sin ¢),

and V1—22= r*‘f(cos%— isin §>\/2— r(cos ¢ —isin ¢). (1)

When z is between 0 and 1 — r, ¢ = 0, and we have, from (1),
VI—z@Z=rivV2—r,

which must be taken as 4, since by hypothesis V1 — 22 = 1 when
z=0.

When z is real and > 1+ r, ¢ = m, and we have, from (1),

V1—22=—irt V2 4. (2)

If we simply put z=1-+47 in V1 —22, we get V— 27 — r2,
and the analysis just given shows that this must be taken as
—4V27r+ 72 and not as i V2r 4 2.

138. Exponential and trigonomretric functions. By definition we
have

2z 2 22
=147+ 5+5+ @)
. 22 25
smz:z—-?T!—l—B-!—"': (2
22 2t
COSZ=1—°'2—!+Z“!“"'~ . (3)

When 2 is real these become the elementary functions. To prove
the convergence of the series place z = r(cos 8 + 7 sin 6). Then
(1) becomes

2 2
(1+rcos6+;—,cos20+---)+i<rsin0+—;—'sin20+--->.
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Each term of the two series in parentheses is at most equal to a
corresponding term of the known convergent series

2 3
T4rdgHg+oo

and hence by thé comparison test (§18) the series converges:
Tn the same manner, (2) and (3) may be shown to converge.
From (1) we have
=1 « e*-er=er17 4)
which are the fundamental properties of the exponential function.
From (1), (2), and (3) we get also

e = cos z + ¢ sin 2,

e~ "¥=cosz—1sinz ®)
which is true for all complex values of 2. From (4) and (5) it
follows that ez+t‘y = €% cos Y + 7€* sin v, (6)

from which we have the theorem:

The exponential function of a complex quantity is itself a complex
quantity. .

From (5) we have

sin z=?:z—;—:.£—'i, cosz=fi——*:2—e:- (N
With the aid of (4) we readily obtain from (7)
sin (21 + 22) = sin 21 cos 22 + €08 2; Sin z», (8)
cos (21 + 2z2) = €os 2, €08 z3 — sin 2 sin 2. )}
In 8) let us place z; =z, 22 = y. We get
sin (z + %y) = sin x cos iy + cos x sin 7y
e +e? .ev— eV
= > sinx 41 > cos x
== cosh ¥ sin z 4 7 sinh y cos z. (10)
Similarly, cos (x + 1) = ¢ +2 i coST—1 al —28‘1/ sin
= cosh y cos £ — % sinh y sin x; 1)

whence we have the theorem:

The sine and cosine of a complex quantity are themselves complex
quaniities.
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1t is known from elementary trigonometry that sin (x + 2 k)
=sin z, cos (x + 2 kw) = cos z, where 2 is a real number and %
is an integer. Hence, from (6),

2R = gt 12)
and, from (10) and (11), .
sin (z 4+ 2 kw) = sin 2, cos (z+4- 2 kmw) = cos z. (13)
From this we have the theorem: .
The exponential function is a periodic function with the tmaginary

period 2 wi. The sine and cosine are periodic functions with the
real pertod 2 .

139. The hyperbolic functions. The hyperbolic sine and the
hyperbolic cosine have been defined in §27 and treated for a real
variable. The same definitions hold for a complex variable;

namel —

Y, . ¢ — e * . & + e \
sinh z = 5 cosh z = . ¢y

From these definitions we have

L. eF—eE

sinh %z = —p — =ising, 2

1z —1z
cosh 1z = Ty T =08z 3)

—i(iz) _ ei(i:)
Similarly, sinhz= — = 7 sin 7z, “)
e 1(i2) e ei(iz) .

cosh z = = cos 2. (5)

From this it appears that hyperbolic functions are essentially
trigonometric functions and that relations between trigonometric
functions give rise to relations between hyperbolic functions, with
certain differences arising from the presence of the factor 7 in
(2) and (3).

For example, since  sin® 4z 4 cos? iz = 1,
we have, from (2) and (3),

cosh? 2 — sinb? 2z =1, (6)

which may be verified from (1).
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We have also
sinh (21 + 22) = — 2 sin (12; 4 122)
= — ¢ 5in 72; COS 122 — 1 COS 12; Sin 722
) == sinh 2; cosh 22 + cosh z; sinh 25, )
cosh (2 + 22) = cos (1z) + 122)
= COS 121 COS 122 — Sin 12; sin ize
== cosh z; cosh 22 + sinh 2; sinh z,. ()
As special cases of (7) and (8) we have, by use of (2) ana (3),

sinh (z 4+ ) = sinh x cosh ¢y + cosh z sinh 7y

= sinh z cos ¥ + 7 cosh z sin y, 9
cosh (x 4 1y) = cosh x cosh 7y + sinh x sinh %y
== cosh x cos y + 7 sinh z sin y, (10)

by means of which the hyperbolic sine and the hyperbolic cosine
are separated into their real and imaginary parts.
From (7) and (8) we have
sinh (z + 2 kw?) = sinh z;
cosh (z + 2 kn7) = cosh z.
Hence

The hyperbolic sine and the hyperbolic cosine dre periodic func-
tions with the tmaginary pertod 2 mi.
140. The logarithmic function. If z=:¢”, then, by definition,
w =10g 2.

The properties of the logarithmic function, namely,
2
log (z122) = log z; + log 22, log ;l = log 21 — log 2,
2

log 2™ = nlog z, log1=0,
are deduged from the definition, as in the case of real variables.
The logarithm of a complex number is itself a complex mumber.
For let us place
z2=12 4ty = r(cos § + 7 sin §) = re”;
then

logzzlogr—i-loge“r:Iogr+i6=%log(x2+y2)+itan“ .
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Here log r is the real logarithm of the positive number r, as
found in the usual tables.

We may now find the logarithm of a real negative number.
For, if — a is stfeh a number, we may write - a = a(cos w4 ¢ sin )
= aqe’™; whence

N log.(— a) = log a + 7.

In particular, log (— 1) =ir.

It is to be noticed that in the domain of the complex numbers
a logarithm is not a unique quantity. For
e¥ = ew+2ki1r =z,

where k is zero or an integer. Therefore
logz=w+ 2 kim.

From this it follows that the logarithm of any number has an
infinite number of values differing by multiples of 2 .

Let us consider the effect upon w = log z by varying z continu-
ously. When z = z;, let us pick any one of the possible values of

w, say wy = log ry + 10,.

When 2z describes a path from z; back to 2z without going
around the origin, r; and 6; return to their original values, and
hence w; returns to its original value. But if z describes a path
which goes around O once in a positive direction, r; returns to its
original value, but the angle 6, becomes 6; + 2 7, and hence w,
becomes w; +2wi. If 2 goes m times around the origin in a
positive direction and n times in a negahve direction, w; becomes
w; + 20m — n)wr.

141. The inverse hyperbolic and tngonometnc functions. If

z = sinh w,
then, by definition, w=sinh™!z;
if = cosh w,
then ‘ w=cosh™' z;
and if 2 = tanh w,
then w=tanh™' 2
These functions are closely connected with the logarithms. For
let ) o — o
z=sinh w = —
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From this equation we have
Y —22" —1=0,
which is a quadratic equation in ¢*.

Hence - =24+ V2 +1,
w=sinh"'z=log (z 4+ V22 + 1). (D)
Similarly, cosh™'z=1log (z 4+ V22 —1), 2)
1 142 X
-1, .2 . 3
and tanh™!z zlogl_z 3)

These formulas are true for any complex quantity z. If z=z,
a real number, (1) gives only one real value of w arising from the
use of the plus sign in (1). If 2 = z, a real number, in (2), we have
two real values of w provided x > 1. If z=z, a real number, in
(3), we have one real value of w when —1 < 2 < 1.

The functions sin~! 2, cos™! 2, and tan~! z may also be expressed
in terms of logarithms. This may be done in the same manner as
that just employed for the hyperbolic functions, or we may work
as follows:

Let z=sinw= % sinh 7w.
Then w=sin"'z= -} sinh~1 4z
= % log (1z V1 —22). @)
Let 2 = cos w = cosh w.
Then w=coslz= -} cosh™! z
= % log (z £V22 —1). (5)
Let z=tanw=%tanhz'w.
Then w=tan"lz= -} tanh™! 7z
L

142. Functions of a complex variable in general.” We have seen
that functions of a complex variable obtained by operating on
x + vy with the fundamental operations of algebra, or involving
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the elementary transcendental functions, are themselves complex
numbers of the form w -+ 7», where » and v are real functions of z
and y. Let us now assume the expression w = u + v, and inquire
what conditions it must satisfy in order that it may be a funection
of z=2 4+ 1y.

In the first place, it is to be noticed that in the broadest sense
of the word function (§1) w is always a.function of 2, since when
z is given, * and y are determined and therefore u and » are
determined. But this definition is too-broad for our present pur-
pose, and we shall restrict it by demanding that the function shall
have a definite derivative for a definite value of z.

In case f(z) is given explicitly in z involving the elementary
functions of the previous sections, this condition is surely met,
because all the operations used in the calculus of a real variable
to obtain the elementary derivatives are valid for the complex
variable, and the derivative is uniquely determined. We have, for
example,

— " =" ! isinz::cosz ilog z=1
dz ’ de * dz
and so on.

‘We shall proceed to show, however that the uniqueness of the
derivative means that » and » satisfy certain conditions. This
we do as follows: In order to ob- b'e

tain an increment of z, we may assign Qa+Az)
at pleasure increments Axr and Ay Ay

to £ and y, respectively, and obtain

Az=Ax + 1 Ay. The direction in which Pz) Az

the point @ (Fig. 112), which cor-
responds to z-+4 Az in the graphical 5
representation, lies from P, which cor- Fic. 112

X

AY .
responds to z, depends on the ratio —A—i » which may have any value

whatever. Corresponding to a given increment Az, w takes an
increment Aw, where, by (1), § 38,

Aw = (9 + 61>Ax }—< - 4 52>Ay

e Jars (@ o]

provided u and » have continuous partial derivatives of the first
order.
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Dividing by Az = Az 47 Ay and taking the limit as Az —0

and Ay — 0, we have
ou ou ov\ dy
. Aw 6x+18 < +i 8y>dx
Lim — .

AzaO A7 .
1-]-1%

1)

Unless special conditions are impesed upon % and v, the expres~
. . ‘ . . . d
sion on the right-hand side of equation (1) involves (Yg’ and the

Aw
value of Lim s depends upon the direction in which the point
Az 0

@ approaches the point P. Now the value of the right-hand side

of (1) when % =0is Bu +

and its value when % = 00 ig
1/0u . 0v
k) < +4 321)
Equating these two values, we have

1 .31)) ov . ou

mriailntia)a ®

. . " . A
This, then, is the necessary condition that Lim _w should be
dy dy Az 0

the same for the two values — = 0 and — = . It is also the
dx dx

sufficient condition that Lim %— should be the same for all values
Az~ 0

of Z—, for if (1) is simplified by aid of (2), g— disappears from it.

Now (2) is equivalent to the two conditions

u_
ox oy

R (3)
u__ o

oy ox

Hence equations (8) are the necessary and sufficient conditions
that the function u -+ 7 should have a derivative with respect
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to x + ¢y which depends upon the value of x + 4y only. From
(1) this derivative may be written

g2y g2 (0 0)
ro=girig=7(G+ig) @

A function u + @ which satisfies conditions (3) is called an
analytic function of x + . )

143. Conjugate functions. Two real functions » and », which
satisfy conditions (3), §142, are called conjugate functions. By
differentiating the first equation of (3), §142, with respect to z,
the second with respect to ¥, and adding the results, we have

5 02
z+ = 0.

Also, by differentiating the first equation of (38), §142, with
respect to y, the second with respect to x, and taking the differ-
ence of the results, we have

0% 0%
Py + = 3 =0.

That is, each of a pair of conjugate functions is a solution of
the Laplace differential equation in two variables.

Conversely, any real solution of the Laplace equation may be
made the real part of an analytic function f(z).

For let # be such a solution. We may determine » from the

Fasations o _ o 0w o
ox oy o0y ox ‘
In fact dv=——a~?€d.x+?ydy
’ oy ox

satisfies the condition for an exact differential, since

2 <_ 3u) -2 /??ﬁ)
oy\ oy cx I\mr

and v may be found by the method of § 36 or of § 75.
Then the function % 4 10 = f(2)

satisfies the conditiops for an analytic function.
Let us now con-truct the two families of curves u = c¢; and
v == cg. If (r1, 1) is a point of intersection of two of these curves,
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one from each family, the slopes of the tangent lines at (zi, 1)
are, respectively, ou
ox
ou
oy
o
dy o=,
and Jdx ov
oy
But from (3), §142, these two slopes are negative reciprocals.
Hence the two curves intersect at right angles; thatis, every curve
of one family intersects every curve of the other family at right
angles. . We express this by saying that the families of curves corre-
" sponding to two conjugate functions form an orthogonal system.
Examples of conjugate functions and of orthogonal systems of
curves may be found by taking the real and imaginary parts of
any function of a complex variable. We have, for instance,

log (x + 9y) = log V2% I %2 + 4 tan—" :1;/
Hence log V2 4 2 and tan-! g are conjugate functions, and the

curves 24 y2=¢, and y = coxr form an orthogonal system. In
fact, one family of curves consists of circles with their centers at the
origin, and the other consists of straight lines through the origin.

Z ~ plane wW- pvlane
Y Vv
R E @
0 S
Q
- P X P U
Fig. 113

144. Conformal representation. An equation
- w = fl2), 1)
where z=1%x -+ 1y, w=u-+ 1, and f(z) is an analytic function,
establishes a relation between the plane in which z is represented
as in §185 and the plane in which w is similarly represented.
[f P(x, y) (Fig.113) is a point on the z-plane and P’(u, ») the
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corresponding point on the w-plane, the relation between P and
P’ is given by the equations

U= u(x: y)’
v=v(x, ¥).

Let Q(x + dz, y + dy) be a point near P. Then (g’(u + du, v 4 dv)
is the corresponding point near P’, where

(2

du = %Z dz + % dy, o
and dy = g—z dx + —g—; dy.
Let PQ = ds = \/dzZ 1 dy?
and P'Q =do = Vdu? + dv?.
Then, from (3) and the relations (3), §142, it is easy to calcu-
'late that do = M ds, @

_ l{ou\? | [Ov\? ou\2 , [ov\?

where M= \J(%> + (5:5) = \K%) + <%> . (5)

‘Since the coefficient M depends only on the coordinates of P and
not on those of @, formula (4) shows that all infinitesimal lengths
emanating from P are magnified in the same ratio. The scale
of magnification changes, however, as the point P changes.

Let R(x+ 6x, y -+ 0y) be another point near P, and let
R'(u + 6u, v+ 6v) be the corresponding point near P’. It is
easy to show,*by virtue of the relations (3), § 142, that

M?2(dx ox + dy Oy)-= du ou + dv dv. (6)

Consequently, if 8 is the angle between PQ and PR, and 6’ is
the angle between P'Q’ and P’R’, we have, by (4), § 45,

cos § = cos 0'.

Hence if two curves on the z-plane intersect at an angle 8, the
corresponding curves on the w-plane intersect at the same angle.
in other words, angles are preserved. For this reason the relation
between the two planes is said to be conformal. .

The discussion given above fails for points for which M = 0 or oo,
For such points we do not expeet to find preservation of angle.
By (4), §142, M is the absolute value of f’(z). Hence the con-
formal property fails at the points for which f'(z) = 0 or oo.
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Example 1.  w=2z
Here u = x2 — 33,
ST M
v =2 zy,
and do =2Vx? 4 y?ds. (8)

The magnification is consequently symmetric about the origin and
becomes greater as the point (x, y) is taken farther from the origin.

The representation will be conformal at all finite points except where
» dw

== 22=0. In fact, if we write

2 =r(cos 8 + 7 sin 0),
we have w=rcos28+isin28);

whence it appears that the angle of w is twice the angle of 2, so that if z
describes an arc subtending an angle 6 at the origin, w describes an are
which subtends an angle 2 6 at its origin. Hence the first quadrant of
the 2-plane is imaged on the upper half of the w-plane. In fact, from
(7) it appears that if y =0 and «x varies from 0 to + o, then » =0 and
u varies from 0 to + oo; if x = 0 and y varies from 0 to + oo, then v =0
and u varies from 0 to — oo . Hence the positive part of the z-axis cor-
responds to the positive part of the u-axis, and the positive part of the
y-axis corresponds to the negative part of the u-axis.

The straight lines T=¢;, Y==csa 9)
on the z-plane correspond to the two orthogonal families of parabolas
v?=-—-4c2u—c?), v2=4c2(u+ c3?) (10)

on the w-plane.
On the other hand, the straight lines

U=:qe, v=2~C e ( 11)
on the w-plane correspond to the two orthogonal families of hyperbolas
xﬁ_yzzch ‘xy:%cz (12)
on the z-plane.
Example 2. w = e,
Here u=e"¥ cos z, o
- . ',‘ui-)
and p=¢e¢ ¥Ygin z.
Since g“‘ = e"¥+2'ﬂ' = es'(z +21r)’

all values'of w are obtained by considering a strip of width 2 r measured
parallel to .©X on the z-plane, the sides of the strip being parallel
to OY. In other words, the entire w-plane is imaged on such a strip.
The conformal property fails only when z = o . For other points

do = e~ Vds, (14)

a¢ that the magnification depends on the distance of z from the z-axis.



EXAMPLES 351

The straight lines y=a
parallel to the axis of reals on the z-plane correspond to circles
u2 + 02 — e—ZC; (15)

with center at the origin. If ¢; = 0 the radius of the circle (15) is
unity, if ¢; > 0 the radius is less than unity, and if ¢, < 0 the radius is
greater than unity. Hence we infer that the upper half of the z-plane
corresponds to the portion of the w-plane,inside a cirele with radius
unity, and the lower half of the z-plane corresponds to the portion
of the w-plane outside the same circle. ;When y = o the circle (15)
" becomes simply the origin on the w-plane, and when y = — o the
circle (15) has an infinite radius.

The straight, lines x=cy
parallel to the axis of imaginaries on the z-plare correspond to the
straight lines v = u tan cs (16)

on the w-plane which are orthogonal to the circles (15). To increase
02 by 2 w does not change the line (16), in agreement with the fact,
already noted, that the w-plane corresponds to a strip of width 2 7 on
the z-plane.

The relation between the z-plane and the w-plane i essentially that
which exists between two maps of the earth’s surface, one a stereo-
graphic projectjon and the other a Mercator projection. In the former,
which may be taken as the w-plane, the north pole is the origin, the
circles of latitude are coneentric cireles around the pole, and the merid-
ian lines are straight lines through the pole. In Mercator’s projection
circles of latitude and longitude are straight lines, the north pole is at
infinity, and the magnification, or distortion, becomes greater the closer
one comes to the pole. The student is advised to compare two such
maps, to be found in any atlas.

145, Integral of a complex funpction. Let f(z) be analytic in a
region R (Fig. 114) and consider the v
integral

“He)de W
,‘ ™
taken along a curve C drawn from 2z; t// /

{0 2zs. This is essentially a line integral. dl
Ih fact, if we piace N (

- X
o Y Y a O
f@ =ulx, y)+v(x,y), dz=dr+idy, \. /

—
(1) becomes Fio. 114
{' (e ¥2) . (x4, ¥2)
| (wdx — v dy) + zf {v dx -+ dy), (2)
< (zy, ¥y) (z,, v)
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and the conditions that the integrals in (2) should be independent .
of the curve C are exactly the conditions that f(z) should be an
analytic function. We have, therefore, the following theorem :

In any region R in whick f(z) is a single-vaiued analyiic function
of z the vntegral f f(2)dz ts independent of the path of iniegration be-

tween z) and 2, cmd the integral f f(z)dz around a closed path is zero.

A corollary is that the path of this integral, whether closed
or between fixed limits, may be deformed without changing
the value of the integral, provided that in the deformation
no point is encountered at which f(z) ceases to be analytic.

148. Cauchy’s theorem. Let f(2) be single-valued and analytic
in a region including 2 point z = a and
bounded by a curve C (Fig. 115). Draw
a small circle around a as a center.
Then in the area bounded by C and

£ )

this circle the functlon is anglytic

and single-valued. Hence

z—a ec—a
() F1G. 116

where the second integral is taken around the small circle.
Now since f(z) is continuous at z = q,

J(z) = f(a) + €
Hence [i(«z)—dz—f(\ 2 +f6dz

z—a

On the circumference of the cn'cle we have
z—a=r(cos § 41 sin ) = re®,
dz = dre® d6,

= _ i de.
z—Q

Therefore

f(

2r

2

-—d __j(a)f 1 do + A 1e df = 2 wif(e) +»,

2 »
where n = ¢ f € dd. Now we may take the radius of the circle so

small that | €| is less than any assigned value for all points on the
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circle. Hence [n| is less than any assigned value, and the value

of f (zf—@;—)- dz differs from 2 mif(a) by a quantity which can be
oz —

made as small as we please. Therefore, from (1),
1
) = f @ , -
©)

This is Cauchy’s theorem.
Another form of this result is .

J@

t—2

f@) = dt, 3)

©
where z is held constant in the integration and ¢ traverses the
curve C.
Jt may be shown that the integral (3) may be differentiated
under the integral sign and that each result thus obtained may be
differentiated in the same way. We shall assume this. Then

. f(8)
f@ ‘2mf(t vl
” 2! f@)
C )_' f(t 2)3

o f(t) “)
"e) =5 f Gz

» f(t)
1" = 27mf(l 21 d

From these it follows that if a func-
tion is analytic, all its derivatives exist.
This is not necessarily true for a function
of a real variable.

147. Taylor’s series. Let f(z) be ana-
lytic within a circle C (Fig. 110) of center
z=a and radius R. By (8), §146, if zis
any point within C, we have

=5 [La @

t— FiG. 116
(c)
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where the integral is taken around the circle C. We have clearly

1 1 _ 1 1
t—2z t—a—(— t—a L_2=¢ ’
- {—a (Z - a>n+l
1 z—a  (z—a)? z—a)* \t—a
= -s- 3
t‘-—al +(t a)2+ +(t—a)"+1_z—-a
t—a
Substituting in (1), we have
_ 1 [ f 10 o
j(z)—Zm'Z{;t——a 2,. (—apdt
(z — a)" f(t)dt PN
+ 2 1 (t ),,+1 + Rny \2/
_ 1 rie ( >"“ \
where R, = 5] 71—2\i—a dt. 3)
. ©
By (3) and (4), §146, formula (2) is (2 — )
Jf(2) = f(a) + (z — a)f’(a) +———f"(@) +-
+E=9 00 4 R, @
We now wish to show that
Lim R, = 0. ()
Let |z—al|=r and |t—a|=
Then [t—2z|= R—r.
Also, let M be the largest value which | f(t)] takes on the cir-
cumference of C. Then
f) (z— a)"“ M <1>"+1
t—z(t——a <SE_+\m ) 6)

Since r < R, we may, by taking » sufficiently great, make the
expression (6) less than any assigned positive quantity e. Hence,

from (3) p
[Ra| < ﬂf{dz].
© .
By using polar coodrdinates With center at a, t — a = Re* and
dt = Rie*’ d§. Hence Re »
|Ry| < — o
from which (5) follows. 0

d0 = Re,



POLES AND RESIDUES 356

Hence (2) gives us the infinite Taylor series

@ =f@+e—af@+-+EL @ @

which converges for all points within the circle C. The size of C
is limited only by the condition that f(z) shall be analytic within
it. Hence the circle C may be extended until it meets the nearest
singular point of f(z). In this way the sirele of conveigence of (7)
is determined. When a function may be expanded around z = a
in the series (7), it is said to be regular at the point a. ’

148. Poles and residues. An analytic function f(z) is said to
have a pole of order m at the point a if

__9@
=550
where ¢(z) is a function which is regular and = 0 at a. By ex-

panding ¢(z) into a Taylor series in the neighborhood of a we get
from (1) a series of the form

, 1

N bn b ,
f(°)‘(z-a)m+' o teetak-a)+- (@)
or, since the series which closes (2) defines an analytic function
¥(2), b b b
m m—1 1 ’ i
f(z)—(z—a)"’+(z-a)"‘*‘+”.+z-—a+¢(z)' ®)

Consider now the integral

[

)

taken along a closed path withi’n- which f(z) is analytic except for
the pole a. Then, by § 145,

[v@az=o,

and, except in the case m =1,

b, [ b,. 1
f‘f—--—"" dz = | i — 0 -
(2 - q)™ 1 -3 —a)™ 1], ’
3 (z -- @) ( n)(z — a) dz

since 2z returns to its original value by a complete circuit of C.

b
We have, therefore, f f(2)dz = f ;—_—1; dz.
©) )
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To evaluate the last integral we may deform C into a circle
(§115) with center at a and radius r (Fig. 117) and write

z2—a=reY,

. 2w
[s@ne= b g, = | i do = 2w,
zZ—a 0 -
©) )

The quantity b;, which is the only coefficient in the expansion
(2) which affects the value of the integral of f(z) around C, is
called the residue of the pole.

‘Consider now a curve C (Fig. 118) surrounding any number of .
poles a3, as, as, -+ +, a, of f(z) and let Ry, Ry, R3, - - -, R, be the

Fa. 117 Fic. 118

residues of the poles. The patﬁ of integration of f(@)dz around C
may be deformed into circles around ay, az, - - -, a,, and, applying
the result just obtained, we have

[f@tz=2 wiR+ Rat -+ Ra).
©

That is, the integral of an analytic function around a closed
path in which the function has no singularities except poles is equal
to 2 i times the sum of the residues of the poles.

The student should not think that a pole is the only singularity
which a function may have. It is the only kind which we wish to
consider. For a more complete study of singularities the student
is referred tb treatises on the theory of functions of a complex
variable.

149. Application to real integrals. The theorem on residues (§148) .
may be used to evaluate certain integrals of real variables. We
will show this by examples.
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eimz

Example 1. Consider f i1 dz, (m>0)

taken along the closed path (Fig. 119) formed by the axis of reals from
— R to R and a semicircle from R back to — R. Within this path the

function integrated has a pole z=1i. To find its residue we write
3

.eimz 1 eimz 1 Y
1+zz~z—i<z+i>~z—-i¢(z)

= ;1?2 () + = )d'G) +- - ],

.
t”ﬁ¢ —
m -R O R-

. e
@) = 57 F16. 119

and the residue is

Hence by the theorem.of the last section the value of the integral
- long the path mentioned is we—™.
Along the axis of reals z =z, and along the semicircle

z= R(cos ¢ + ¢ sin ¢);
whence €™ = ¢~Fm %% cog (Rm cos ¢) + 1 sin (Rm cos ¢)].
Consequently for the given integral along the closed path we have
R emdx
f— R1+4 22
4 f" e~ Emsindlaog (Rm cos ¢) +1 §in (Bm cos ¢)]
0 14 R%(cos2 ¢ +18in2 ¢)

Now let R—+. It is not difficult to see that the last integral ap-
proaches zero“as a limit, and therefore

R(—sin¢ + tcos ¢)do.

0 eimx B
f —— dz = me "™
-0 14z

cos mx , .sin mx m
5+t 5 dx = we~™,
1+ l+x

Butthisis | :(

and equating real and‘imaginary parts, we have

f ® €cOos mx

© _-—}-_p;f dx = we ™,

®© sin mx
j:w-————lﬂzdw_o,

whence, finally, j; ® %’SIT-Z-; dx = 12_” e~™, (¢
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Example 2. Consider the integral

e dz

z

along the path (Fig. 120) consisting of the axis of reals from r to + R,
a semicircle from R to — R, the axis of y
reals from — R to --r, and a semicircle
from —r to +r.

Along the axis of reals z = =, and along
tho two semicircles

<

. o
2= R(cos 8 + i sin 0) = Re“’, = X0 |
R ~rQ r R
and 2z =r(cos O + i sin B) = re®,
Fi1a. 120

respectively.
Since the function has no pole in the region bounded by the path,
the integral is zero, and we have

fREi-I-da:—}- f"'e"’ sin 7005 (R cos 6) + 7 sin (R cos 0)1: 4
x

“r

+f - dx+f e~ T8 8100 (7 cos H) 4 i sin (r cos 8) 1 dO = 0.

Now let B —> o, r—>0. It is easy to see that the second mtegra}
approaches 0 and that the fourth integral approaches — 7i. Hence

iz i
fo“%dx+f_:%-dx—1ri=0. @)
In the second integral let x = — X\. Then
—~iA o g—iT
[ a=n==f" —-——d)\——f —
so that (2) is fo e——-:—f:— dx = 71i;
that is [ % do =2 @)

Example 3. Consider the integral

w pP—1
f ud Jx,
o 1+=x

which we have used in the Gamma functions. This converges if p is
positive and less than unity. To evaluate it we take the‘integral

p--1
et
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along a closed path (Fig. 121) consisting of (1) the axis of reals from
r to R, (2) a circle from R back to R, (8) the axis of reals from R to r,
and (4) a circle from r to r.

Inside this boundary the function has one pole, z= —1, and the
residue is _ yyp-1 — po-m = cos (p — 1) + 4 sin (p — 1),
So that the value of the integral is }

—2mrsin (p—1)wr+ 2 wicos (p— 1.
Consider each of the four paths in succession.
Along path (1) z=x = x(cos 0 + ¢ sin 0). Therefore the integral is

p—1
fo dz.
r 14z

Along path (2) z= Re®. The inte-
gral is

2m Rﬂ—le‘l(P 1)0

tRe* de,
° 1+ Re®
and the limit of this is gzero as R — o,
since p < 1.

Along path (8) z=2x; but we must
now write

z=x(cos 2 w + 1 sin 2 7) = xe?™, Fic. 121

since the angle of z has been increased by 2 7 by the passage around
the circle R. Hence the integral is

j};’ x"l i:z;’“ ff 2P~ cos 2 {)er_ : isin2pr]
Along path (4), 2=reé", The integral is
orﬂ—let(a 1)0
‘l;vr 14 re®
and the limit of this is zero as r — 0, since p > 0.

Putting together the four results and at the same time passing to the
limit, we have

w Pl 0P ~1cos2 prr f‘)xl’ L gin 2 p
0 1+xd£ -/o; 1+x dz + 14+ dx

=—27sin @—Dw+2 wicos (p— l)lvr'.
Equating rsal parts and making simple reductions, we have

rie® db,

p-1
(1 —cos2 pr)_/;”f—;-; dx = 2 w sin pw,

. 4

o Pt 2 7 sin pmr T
or I _2msinpr_

1+x ~ 2sin’pr  sinprw
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150. Application to Bessel functions. We have seen in (4), §116,

that " 1
Jn:c=—————————f el — )"t gt 1)
@) = et -" ¢ D
is a solution of the lBessel equation
%, dy | \
2% Y oy 2 __ 2\,
x e +2x 7z + (x* —n)y=0. 2)
This leads us to inquire whether other integrals of the form
8
y= x"f el — 35 dt 3)

may be solutions of the same equation if @ and 3 are properly
determined. We will accordingly substitute (3) in (2). We obtain

8
@n+ Dzt [ i1 - ) d

@

B
+ xn+2fA eizt(l — tz)”"""li dt =0, (4)

The first integral in (4) may be integrated by parts, using
u = 1e” and dv = t(1 — t)"~% dt. Then (4) reduces to
t=8
[____ ax™ 1 (1— t2)n—§eizt] = 0. (5)
te=a
Equation (5) may be satisfied by placing a=—1, 8=1. In
that case we have the integral which n
occurs in the function J.(z). Equation g
(5) may also be satisfied by placing =1,
B =147, and we have a solution of
(2) in the form .

14t X .
Y= :c"f e (1 —t5)*"2dt. (6) l T
1

To study this we note that the line
integral of f

——R

et (1 — )3 dt

-

T 7@

is zero if taken around the closed path — ¢
OPQRSO (Fig. 122) in the planet=£+445. © P

We leave it to the student to show that Fi. 122

the integral around the quarter-circle PQ approaches zero as a
limit as the radius of the circle approaches zero, and that the
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integral along RS approaches zero as OS approaches infinity.
Hence we have

1410
f wl(l t2)"—" dt = __f u:t(l t2)n—-,- dt
1

—-f ”’(1—-t2)”“’dt - )

where the first integral is taken along the line QR, the second
along the line SO, and the third along the line OP.

If we take x as real, the first integral on the right of (7) is a pure
imaginary, since it is taken along the axis of imaginaries where
¢ and (1 — ¢2)"~¥ are real and dt is a pure imaginary.

The second integral on the right of (7) breaks up into a real

integral 1
j; cos zt(1 — t2)" % gy
and a pure imaginary integral
i fo din xt(1 — 2" .
Hence we have, using R(y) to denote the real part of ¢,

1
R(y) = — x"f cos xt(1l — t3)»~% dt
0

x" 1 1
= — ‘:“f cos x2t(1 — t3H)" "7 d¢
2J-1

x” ! . 1
=— —f e (1 — %"~ 1 dt,
2J-1 .
the last transformation being made as was done in obtaining (11),

§114, and therefore, by (1),

1
Jp(x) = — . 8
= e Tl ®)

To obtain the real part of y substitute in (6)

. 1w
t=1+4—:
x
where v is a new variable. We have, in the first place,
29 v\ n-%

y-=—x"'1£m(— 0y ”(———+-—§) dv,

X X7
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9
If we take out of the parenthesis the factor — 7 and place

1"
—1i=-¢e , then after a few changes we have

evon - x vt n—%
y=— — j; e "% (1 + x> dv, 9
where ‘P“Z“gnII)W

Let the quantity in parentnesis be expanded by the binomial
series. The typical term is

e

@) (0)%, (10)

which must be taken equal to unity when k£ = 0. Therefore

' VAR 3 2k—1) 7
givon— k= ”_'5) "3 <n_ 2 ) [“’ IS
I A k@ 2)F Jo &0
(=) (»=5) (=25 "
-_ei\ldzn“’}k:m n 2 n 2 n-— 2 g F< ) .1_)
T g & k(2 2)F ntEt3)]
1 9 (2k—1)2 7
gibon—ti= ("2—i><"2 - Z) T ("2— 4 ) 1
== 2 K@ ar P(”'*é).
won—y
=~ "5 (P@) + tQ(x)]F<n+ 3)
h "
";(j)ril_(n o it P Lt O it ) it 0 i SN
21(2 2)° 4'(2 )" ’
2 1 2 1 2 9 2 25
- @=pr -Pr’ -2
@) =57 312 7)° LA
Therefore the real part of y is on-} .
(— Pcosy + Qsiny) 7 r (n, + §>,
. r 2 v ¢3 \
and, from (8j, Ja(z) = \/;5 (P cos Y — @ sin ¢). (11)

The solution (11) is one which may be used to compute J,(x)
for large values of x. The series for P and 9 o not, however, con-
verge; but it may be shown that the error made in neglecting
the terms after a sufficient number is less than the first term
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neglected, so that if the series is broken off before its smallest
term the best degree of accuracy is obtained.

To prove the statement just made let R, be the remainder in
the expansion of <1 + -2}1)-) ! after the term (10) is reached.
Then, by (12), § 7, * '

/1y 3 2k+1\ .
\”“é)("”é)”(""“?‘) Gl S PR () Nt I
= k! (Z) ./;t <1+ 2 ) .
c\v—— t)

n—k— M
But (1 + - ) ar< 1 in absolute value if £ > » +g and

t lies between 0 and ». Hence

(=Y (-5

(k+ 1)1 @x)*t!

[Re| <
and

fme‘”v”“"iRk dvll
0 .
<n_l><n_§>...<n_?L+_1)
< 2 2 2 I“<n+k+ %),

e+ 1)!(2z)k+t

that is,

fwe“”v”‘%‘dev
0
( 1<2 9) (2 (2k+1)2>
'n".—.—-- n — — o o n [ - —
< 4>_ 4/ 4 I,<n+1>

(k + 151(2 2)*+1 2

5)-
From this it follows that the error made in cutting off the series
P +1Q
with any given term is less in absolute magnitude than the value
of the first term omitted. The expansion for J,(x) has, then, the
same property. Such a series is an example of an asymptotic
exrpansion. ‘
We may find another solution of the Bessel equation by taking
the imaginary part of the integral y multiplied by any constant.
In that way we find the solution

Y.(x)= \j% [Q(x) cos ¢ + P(x) sin ).
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EXERCISES

Carry out the following operations and graph each of the given
numbers and the results:

L@+30)+@—1). 2.2+80)—@E—1d). si“:'z 2+131-

5. Find the modulus and the angle of each of the following numbers:

1 + V-3, 1 -V-—- —4, —TV= 1.
Find the followmg powers and express the results graphically :
6. 2-39%  7.(1—iV2)L | s (149% 91—

Find all the values of the following indicated roots and locate them
graphically :

4 4 ~——— 5 5 j——— ] 8
10. V1. 11. V—1. 12.V32. 13. V—32. 14 V_8 15 V3.

16. If 1, w;, ws are the three cube roots of unity, prove that we? = w;,
w?=ws 1+ w + ws=0.

17. Study the effect on w =\3/; by various paths described by z.
Express the following as ecomplex numbers :

18. 64", 20.sin(l + 9. 22. sinh i. 24. log (— 2).
15. ¢~1, 21. cos(— 1 + %V:—é) 28. cosh (1 +V2). 25. log (1 — 7).

Find the orthogonal systems of curves defined by the real and
imaginary parts of the following functions:

26, 1. 27. log 2= L. 28.log V22 —1. «  29.Va.
z z+ 1
Study the conformal mapping defined by the following functions:
80. w = 2", 82. w =sin 2. 34.w=z—1-
i z+1
31. w = log 2. 83. w= P 85. w = cosh z.

Calculate the following integrals, where m, a, and b are real
numbers:

- sin mx 0 g4 — gbz
—_— 39. — . 1, 1
36./‘ @t a) f:-w 1—¢ . @<Lb<D)
®© COS MX ®© COS T
37. d. .
TT s 4oj; S @>0

ax

. ¢ ® 2 2 [ Pin 2 g
88. f—ool'}-e’dx' (a< 1) 41./(; cos x d:c-—jo sin z2 dz.




CHAPTER XVI

ELLIPTIC INTEGRALS :
151. Introduction. Any integral of the type

f P(z)dz, 1)

where P(x) is an algebraic polynomial, is easily evaluated, and
only one type of integral occurs; namely,

xn+1
fx do =T @)
Any integral of the type

P(x)

—= dx, 3

@ ®
where P(x) and Q(x) are polynomials, may be evaluated by sepa-

ration into a polynomial and partial fractions. There is necessary
a new type of integral, namely,

dx
f == log z, 4)

so that the integration of a rational fraction is only possible by
aid of a new kind of function, the logarithm. In elementary work
there also arises the type

de . 1 x
fx2+‘;5=;tan1—, ' (5)

a

.

but from the standpoint of the complex variable this is not
essentially different from (4).
Any integral of the type

fR(x, Vazx + b)dz, 6

where R(x, ~/ax + b) is a rational function of z and ~/ax + b.
is integrable. For if we place

z=\n/}zx+b,

we reduce (6) to the type (1) or (3).
365
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Any integral of the type
f R(z, Vax? + bz + c)dz )

is integrable'.' For we may write
ax’+bx+c=ax—r)(x—r2)

and place Ax —n) = Valg—r) & —r2).
rz? —
Then z-___._i%__g’lg,
4 22—a
Ver ThaTe= a(r, — r2)2
ard+br+c a4
2a(re — )z
dr = @ —a)? dz,

and (7) is reduced to the type (1) or (3). This proves the possi-
bility of the integration, but does not outline the method which
is necessarily the most convenient in practice. No essentially
new type of integrals or functions arises, but it is convenient in
elementary work to have the formulas

dx ! dx
.[Vgijﬁz““ly j%@ﬁ:;=bg@4“%ﬁiaﬂ.@)

This is as far as we can go in general statements as to the inte-
grability of algebraic functions. If the integrand involves the nth
root (n > 2) of a polynomial higher than the first degree, or the
square root of a polynomial bigher than the second degree, the
integral cannot in general be evaluated in terms of elementary func-
tions. Of course, particular cases of such integrals may sometimes
be evaluated. .

The integrals f R(z, Vard3 + b2+ cx + e)dx 9)

and fR(x, Vazxt + bxd3 + cx? + ex + f )dx (10)

are called elliptic tntegrals, and their evaluation requires new func-
tions, the elliptic functions.

It may be shown that (9) may be reduced to (10) by algebraic
substitutions, and that the integration of (10) may be reduced to
the evaluation of integrals of elementary types and the following
new types: -

1. Elliptic integral of the first kind :

dx

V(=251 - kz?)

an
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2. Elliptic integral of the set,ond kind :

— k2 2
f \1 — ka2 x 12)
3. Elliptie integral of the third kmd:
‘ dx ‘

(2 — a)V(1 — 251 — k%2?) (13)
These are Legendre’s normal forms. "In all of these it is usual

to take £ < 1.

We shall show later that (11) may be reduced to

[ (14)
which is Weierstrass’s normal form for an elliptic integral of the
first kind.

152. The functions sn u, cn u, dn u. Consider the elliptic inte-
yral of the first kind : dae

VU—ﬁm k%)
This integral defines % as a function of ¥ and z:
u = F(k, x).
The quantity k is the modulus of the integral. We shall consider
it fixed and consider «# as a function of x only. Conversely, z is

a function of « defined by the integral (1). We use the symbol
sn «.for this funection and have, from (1),

1

i Z = SN Y. (2)

Involved in (1) are also the expsessions V1 =22 and V1 — k2z2,
giving other elliptic functions *

Vi—2z2=V1—sn2u=cnu (3)

and V1—k2%2=V1—k?>sn2u =dnu. 4)

There are questions of algebraic signs to be given to the radicals

involved in (3) and (4) which are partially answered by the state-
ments taken as part of the definitions,

sn 0=0,
en 0=1, (5)
dn 0 =1.

All other values come out of these by continuous variation of z,
as in §137,



368 ELLIPTIC INTEGRALS

In (1) we may place z = sin ¢.
We have U= f — (6)
o V1—Fk2sin2¢

This defines % as a function of ¢ and, conversely, ¢ as a function
of u, which is called the amplitude of u and is written

3

¢ = am u.
Then == gin (am %) = sn u,
V1 —x2=co8 (amu) = cn u, )

V1 —k2x2 =V1—k2sin2 ¢ =dn u.
Let us now consider the effect on « in (6) by adding = to qS

Let uy = o ®
4 i 0 1 — k2sin2 4)
¢t d¢ " d¢
Th Vi—Fksnle o Vi—klsinig
en A VI—_Ksnio [ V1—kZsinZ ¢

+ f T+ ¢y ¢,
—————eeee 9
n V1—k2sin2 ¢ ©
The first integral on the right-hand side of (9) is obviously equal to

2 f P de
V1= kZsin? qb
In the last integral in (9) place ¢ = w + . It becomes
""____dk"_
Vi—k’sin?y -

which is the original u;. Hence if we place

K= f [ e 10)
V1-— lc2s1n2 Jo V({1 —x2)(1— k%x2)

we have, from (9),

b+ d¢
b Vi-ksmig ot
whence 1+ m=am (ui + 2 K),
and consequently sn (u; + 2 K) = —sn u,,
' en (u + 2 K) = — en uy, 1y

. dn (w1 + 2 K) = dn u,,
since, by (8), ¢1 = am u;.
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By repetition of these formulas we have

sn (w+4 K) =snuw,
en (u+4 K)=cnu, (12)
dn (u+4 X) =dn u.

- The elliptic functions sn %, en # have therefore the period 4 K,
and the function dn u has the period 2 K.

These are not the only periods, however, as will be seen later.

153. Application to the pendulum. Let a simple pendulum of
length [ swing in an arc of a
circle.

Let A (Fig. 123) be the lowest
point of the bob, B its highest
point, and P its variable posi-
tion. Let the angle AOB = ¢,
the angle AOP =6, and let
OA =0P=0B=1.

The differential equation of
the motion is

2
l &0 =—gsinf;
de?
whence

do\?
l %)= 2g(cos § —cosa), (1) Fic. 123

the constant of integration being determined by the fact that
when 6 = a-the velocity is zero.

From (1) we get ‘\[ét-:fe d9 , 2)
l o V2 (cosd — cos a)
if we assume that 6 = 0 when ¢ = 0.
a 1 9
—sn?, 1l no ()
In (2) place k =sin 5 % in > sin ¢ (3)
_ . .
We have \j 9i= f dé . 4
Vo Vi—kEsinz¢
Hence ¢ =am \@ t. (6)

A geometric interpretation of many of the quantities involved
in this problem may be given.
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v

From B draw BB’ perpendicular to 04 and intersecting OA
(produced if necessary) in €. On AC as a diameter describe a
circle with center at O’. From P draw PM perpendicular to OA
and intersecting the circle @’ in @. Draw CQ and prolong AO to
meet the circle O at A/, and draw A’P.

Now singz 1—cosf _  |1—0OM __ |AM
2 2 N731 21

ca_ [I=cose _ [140C _ [AC
k=sing=N"7% =Nz “Nar

“

(the last result is also true if C falls between 4 and 0),

ool [ [ANCC_ Mg,
s =gsin 5= Nym = NAC HC ~ CQ

Hence ¢ = angle OCQ = am \J] ;Z L (6)
faa) é — — ]_@
Then sn \flz—-sm¢~ o )
9 cos = M
cn\/lt-—~uos¢_CQ, (8)
and, with the aid of (3),
[ e MA'
dn \!% t=V1— k?sin? ¢ = cos g =—p’ C)]

: 4 .0
since the angle PA’A is 5

¢

The construction is to be such that as P travels back and forth
in its swing the point @ describes_the smaller circle in a positive
direction and the angle ¢ varies continuously from 0 to 2 .

As ¢ increases from 0 to 77{, the pendulum bob P swings from

2
A to B, and ¢ increases from 0 to \g K. As ¢ then increases
from 7-25 to m, P swings back to 4, and ¢ becomes 2 \/ é K. Then

as ¢ increases to § 7 and then to 2, P swings up to B’ and back
to A, and ¢ becomes successively 3 5 Kand 4 \g K.
Hence if we take as usual 4 T as the period of the swing, we

have 7
' T=+-K.
Ny
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From (11), §152 _
T +2T)= - N

en \j-‘ll (t+27T)=—cn -\f? t, (10)

dn\fg(t+2T)=dn\l?llt.

These results are directly evident from 'the figure; for if at the
time ¢ the point @ is as shown in the figure, it will be at Q' when
the time is ¢+ 7. Then MQ!= — MQ, and CM is now minus
the cosine of the corresponding angle ¢. From (7), (8), (9) we
may deduce (10) geometrically.

154. Formulas of differentiation and series expansion. From

__f dx
\/(1—x V(1 — k2x2)

du
we get
&z~ 1= x2)(1 527
whence, by inverting, l—i%%Q =cnu dn u. Q)
From enu=V1—sn?u
d(enw)
we get e sn % dn u, (2)
and from dnu=V1—kZsn2u
ddnw) .,
T = — k*sn u cn u. 8)
From these we may get Maclaur;n 8 senes
snu—-u—(1+k2) +(1+14k2+k4) ...... , @)
6
enu = 1——+ (1+4k2)~—— (1+44 k2 + 16k4)%+ e, ()

6
dnu=1-—k= +k2(4+k2)——-—k2(16+44k2+kf‘)%7+---. (6)

From these series follow the formulas, which may "also be
obtained from the original definitions,

sn (—u) =-—snu, )

en (— u) = cn u, (8)

dn (— u) = dn u, 9
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155. Addition formulas, Suppose # and v to vary so that

) U+v=a,
where a is a constant. +
dv
Then — =1,
du
Let §) =sn U, 82 = SN v,
Y _Gs2__dse
YT du ~  dv

=vnednu. =—cnovdnuo.
Then .

$12= (1 — a1 — k%s;?), §22 = (1 — s22)(1 — k%s2?),
Si=— 1+ ks +2k%:3  S2=— (1+Kk%s2 + 2 k%5,

. d$ . ds
where 1= Sp=—r
Then §182 — 8281 = 2 k?8182(8:% — 822),
81%82% — 82717 = (1 — k%51%55%) (827 - &1%),
and §182 — 8281 - 2 k?s182(s182 + $281) .
.§182 — 8281 1-— k2812822 ’
whence  log (8182 — $281) = log (1 — k2s;%s2%) + Ci.
\ . 8182 — 8281
That is, 1—__—"{2‘;5;? = C,

or, written out in full,
ecnudnusnv-4+cnvdnosnu
1—k%sn?usn?v

= C.

This is one solution of the differential equation
du 4+ dv =0,
of which another solution is evidently
U+ 9= q.
Hence, by the theory of differential equations, C must be a
function of a; that is,
cnudnusnv+cnovdnovshu
1—k?sn®wusn®y

= f(u+v).

To see what function this is we place » = 0 and find
o sn u = fu);
therefore f is the funection sn. Hence
snuenvdnv+snvenwudn U

sn (u+ ) = —— @

i—k%Zsn?u sn?y
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From this we find that

cnucnv—snusnovdnudno
1—k*sn’usny

en (u+v) =

’ @)

dn (u + 1) dnyudnv—k*snusnvcnucnv
) 1—k%sn’usn®v

3

By the use of (7), (8), (9), §154, the formulas for sn (u — o),
en (u — v), dn (u — v) are easily written.
156. The periods. We have already defined K by the formula

L dx
K =f . 1
o V(1 —2z2)(1— k22?) @D
From (1), smK=1 e¢nK=0, dn K=k, 2)

where k' =\/1 — k2, the real positive root being taken if k < 1.
Using These values in the addition formulas, §155, we have

cn %
sn (u + K) == (—i—n—z?
,Shu
en(u+ K)= —-klt T 3)
dn (u + K) = d_n—zl'

By adding K to « in (3) and again applying (3), we get

sn (u+2 K) =-—sn u,

en(u+2 K)=—cnuy, (4)
dn (u+2 K)=dnu;

and again, adding 2 K,

sn (u+4 K) =sn u,

cn (u+ 4 K) =en u, (5)
dn (u+4 {{)::-dn u,

in full aceord with §152.
We define K’ by the formula

(! dt °
K _fo V(I =2 (1—Fk22)

®
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1
Let us place =i
— k't
VI — 22 = —=——
A= vw

where the sxgn of V1 — 22 is fixed as in §137, since = varies from

1to~ 1 as t varies from.0 to 1. We have, then,

k
de . dt '
V-2 1-Fz) NA-00- k%)
}; dx
whence Vi a k2x2).

From (1) and (7),

K+ iK'= : dz ;
“fo VI =251 — k2z2)
whénce : sn (K 4 1K') = %
en (K 4+ 1K') = ‘k"‘ ,

dn (K +1K') =0,

where the sign of en (K + 1K') is fixed as in §187.
The use of the results {9) in the addition formulas gives

, dnu
sn (u+ K +41K’) = Tona
— ik’
cn(u+K—FzK’)-—-—-———.
kenu

dn (u+ K + ik’ = H %,
enu

whence we get
sn(u+2K+21K')=—snu,
en(u+2K+21K')=cnu,
dn (w+2 K+ 24K’) = — dn u.
We may also place
u+1K' =@wuw+ K+1K')— K

)

®

9

(10)

11y
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and, applying the addition formula and making use of (2) and
(10), together with (7), (8), (9), §154, we get

N ,
sn (u+@K)_ksnu
. 1dnu
cn (u+1K') = kqnu (12)
dn (u+iK") = —20%;
snu
whence sn (u+ 2¢K!) =snu, .
cn (u+21K’') =—"cnu, (13)
dn (4 + 2:K’) = —dn u,
and sn (u+41K') =snu,
en (u+4 44K’y =cnu, (14)

dn (¥ +4?K’) = dn u.

Some of the results obtained may be summed up in the fol-
lowing theorem :

The elliptic functions sn u, cn u, dn u, are doubly periodic func-
tions: the function sn u has the periods 4 K and 2 1K’ ; the function
en u has the periods 4 K and 2 K + 24¢K’; the function dn u has
the pertods 2 K and 4 1K'.

157. Limiting cases. CASE I. If we place k = 0, we have

e [
Jo V1 —z2’
whence sné=sinu, cnu=cosu, dnu=1.

The quantity K becomes — 5’ and the period 4 K is 2 7. The
quantity K’ becomes infinite and ceases to have a significance as
a period.

Case II. If we place & = 1, we have

. S
u= T
0 — X
- - et —e
whence - sn u = tanh 4= ————
14 + P u
cnu = - 2
T u + o
2
dn u = ;mq-_—e'j;'
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The quantity K' = —27[, and the period 4 1K’ becomes 2 wt. The

quantity K is infinite and ceases to be of importance.

158. Eiliptic integrals in the complex plane. The periods of the
elliptie functions may also be obtained by considering the various
values acquired by the elliptic integral, now written as

[“" dz
w = j. ’
Jo V(1 —22)(1 — k%?)

@

by wvarious paths in the plane of the complex variable z = 2 4 #y.
The singular peints of the funetion
1

= 2
1 V(1 —22)(1 — k%*?) ®

are - 1. + k{ At all other points f(2) is regular. -

By §145 any two paths of integration which do not include
between them one or more of the
singular points will gpive the same
value of the integral. We may
therefore cxamine the difference in
the value of the integral for two
naths which do surround one or
more singular points, and since a Fic. 124
passage around two singular points ‘
does not change the sign of f(z) we shall take paths surrounding
twe singular points. .

fet wy be the value of w obtained by integration along any
given path ¢ (Fig. 124); that is, let

z dz
Wo = [ s 3
° (53’ V(1-22)Q1 - k222) @)

and let Cy be a path which, together with €, incloses the two
singuivr points 1 and — 1. The path C; may be deformed ‘with-
oul changing the value ol the integral into a portion of the axis
of reals from 0 to I — 7, a circle with radius r and center at z=1,
~a portiort cf the axis of reals from 1- r to — 141, a circle of
radivs r and center at z = — 1, a portion of the axis of reals from
-~ 147 to 0, and the curve C,. This is shown in the dotted line
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of the figure. The value of the integral is then egunal to the sum of
the following seven integrals, taken along these paths:
1-r dx dz

o V(1—x2)(1— k%2 +fo\/(1 — 21— k%)
0 g

dx 1+ dx
‘+f V(=25 (1 - k) +.[ V(A=) — k22

dz dx
+f—— \/(l—zz)(l——klzz) 14 r\fl——xz)(l - k?r
+ dz .
& Vi-22)1— k?z2)

4

where the second and fifth integrals are taken around the respec-
tive circles, and the changes of sign of the radical are due to passage
around a singular point. Except for the integ:als around the two
 small cireles the sum of the integrals in (4) is clearly equal Lo

1—r daz
4 = § Wy (5)
o V(1—x2)(1~ k2r2) (
To evaluate the integral around the circle with center at z = 1,
take ¢ as in Fig. 124.
Then 1—2=1—2x—yi=r(cos ¢ —1sin ¢),
dz = r(sin ¢ + 7 cos ¢)d ¢,
dz =
V(1 —22) (1 — k?22) o
where F(¢) does not contain r as a factor. A similar expressior
is obtained for the integral around the circle with center at
z2=—1 -
Now let r -— 0. The value of the sum (4) aoes not depend upon r.

We may therefore take the limit and
have

dz
Jo VI = 22)(1 — k2%?)
But the value of z in (8) an:l (6) is
the same. Hence
sn(4 K + wo) = sn wo. )]
Consider now a path Cs; (Fig. 125) which, together with C,

=4K+wo. (6)

Fia. 126

. " . 4 1 .
incloses the two singular points 1 and e It may be deformed into
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the path shown by the dotted line, and by the methods just

used we have dz g
K 4w

( f Vi—)l=k) K wo. ®)

Hence sn (21K’ + we) = sn wo. 9)

Similar discussions may be applied to other paths to obtain the
formulas of §156 and other like formulas. ;p
Consider the path of integration (Fig. 126)
consisting of the axis of imaginaries from O
to 1R, 5 semicircle of radius R, and-the axis
of imaginaries from —+R to 0. If R is taken T

greatér than —1—, the path may be deformed

ints one along the axis of reals from 1 to T
_azn back, and therefore the value of the in- T
re.d along this path is 2+¢K’. Along the
seraicirele place R
2z = R(cos 6 4 7 sin 6). Fic. 126

The integral around the semicirele is then of the form
1 f';"'
B F(6)de,

where F{#) remains finite as R —- . Hence, by the limit process
zirzady employed, we have
dz — 2K
o V(1— z2) (1--5 k222)

’

or

f \/(1——22)(1 — k222 =K (19)

in this demonstration the axis of imaginaries may be replaced
by any curve running to infinity and symmetrie about O without
essential change, so that the path of integration in (10) need not
he specified.

Equation (10) gives the result

sn tK') = o0,
‘nra which cn (1K') = o0,
dn tK') = ™,
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From (12), §156, and (4), §154,

. 1
sn\w+zK’)=ksnw
1 1+4k 5 -
'—kw[l 6 we ]
J L Lk
Tk ek YT

or, replacing w 4+ tK’ by w, .
1 L1+ k2 .
W= k) T ek W)

which shows that at w = 1K’ the function sn w has a simple pole

with residue ]%

" Similarly, the function enu has at w=1¢K’ a simple pole

. e 1 . . .
with residue — P and the function dn w has a simple pole with

residue — . N
159. Elliptic integrals of the second kind and of the third kind.
We have defined

_»,,..

{1
, V 1— a2 1)

as an elliptic integral of the second kind, If we place

x = gin ¢,
the integral (1) becomes i
e E(, ¢)= wfi‘ —kZsin? ¢ dep. (2)
When ¢ = 1n {2), the integudl is denoted by FE; thus,
5 e
E =f V1 — kZsin? ¢ do. (8)
0

The values both of Z(k, ¢) and of E for various values of
¢ and k may be computed by expansions into power series, or
such values may be found in tables.

¥rom (2) we have

b+

Bk ¢+m =] Vi-ksnl¢dé

. b

= [ViTEsTgde+ [ VIR gde. @
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The first integral is evidently 2 E, and if in the last integral

we place ¢=v+m,
6
i1, hecomes f V1—ksin?y dy = E(k, ¢).
Y
Hence Rk, o+ w) =2E+ Ek, ¢). (5)
This integral occurs in the problem of finding the length of an
arc of the eflipse ‘ ¢ 9_5_2 N £ B
a® ' b
for which we readily. compute
2 __ 2 2
s = f \/ a® —e’x 6)
» x“
where ¢ = }/.ﬁ‘.‘fa“ 0? — 5 is the eccentricity of the ellipse. If in (6) we

place x = asin ¢,

¢
it becomes s= a[ V1 —eZsin? ¢ do = aE(e, ¢).
JO
Then aF is the length of a quarter-arc of the ellipse.

The integral (1) may be made to depend upon the elliptic
functipn sn u. For if we substitute

T=s8nu
and denote the result by E(u), we have
E(u) =] dn® u du = u — sz an® U du. @)
0 0

This result may be expressed as a power series 1 7 by the aid
of §154.
The elliptic mtegral of the third type has been written

dx
(22 — a) V(1 — 22)(1 — k2x2), ®)
do .
or [ (sin? ¢ — @)1 — kZsin? &
If we place 2 =8n u, =sn? q,
this becomes — 9

o snZy —snZa

A further study of the two integrals (1) and (2) would involve

properties of doubly periodic functions, which lie cutside the scope
of this book.
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160. The function p(u). Just as the elliptic integral of the type
(1), §152, defines the function sn u, so the elliptic integral

» dx ® dx
= = 1
“ »/a: VA 23 = gor — g3 j; Va(x — e1)(x — e2)(x — €3) @

defines x as the function = = p(u), 2)

which is the Welerstrass elliptic function. We rrote first that

9% _ yr(u) =VIpw) — gop(@) — ga)

du
so that p(u) is a solution of the differential equation
/d¢ 2~ 5
(Gr) =4¢°—0:0— 0o (3)

The integral (1) may be reduced to a Legencrian integral of
the first kind. Let us place .

x=e3+ %—2-, 4)
where ¢ is to be determined later. Then, using the second form

of the integral (1), we have
dt

"= é : ; (5)
(-t (-5t
and if we take ¢°=e —es and k?= ?;?» (6)
1 — €3
1 dt
5) becomes u == f . 7
® e 9Jo V(1 —12)(1— k22) (

If ey, e2, e3 are real and e; > ez > e3, k in (6) is positive and less
than unity. ’
We have, from (7), t = sn (gu), (8

apd from (2) and (4) we have a relation existing between the
funetion sn # and the function p(u),

p(u) = es + 9)

sn2(gu)

7

Let us place w=—éK—, w = :—Kg—, where K and K’ are derived
from the integral in (7). Then, from (9) and the formulas of

§156, we have p(u+ 2 w) = p(u),

10
pu+ 2 1w’) = p(w). (10)
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Hence the function p(u) is a doubly periodic function with the
two periods 2 w and 2 tw'. .
From (9) we obtain readily

p(w) =es+ g° = e,

p(w+ ') = ez + k?’¢° = ez, (1)
) p(w’) = es.
Consequently, from (1),
P .
o Vax3 = gx —gs
o = dr , (12)

o VA3 — gor — g3

w+w'=f dr s
e V413 —gor—gs;

and, by combining the last two,
(13)

[
w = = .
e, V43— gox — g3

161. Applications. 1. Consider the problem of finding the length
of the arc of a lemniscate

=2a%cos2 0. A
2a2dr
We have 8= f m (2)
Place = —1
7
8 © o dz .
Then 2= l N 6]
a? s
whence = z= p<(—l>. 4)

In the elliptic integral (3), g2=1, g3 =0, e; = 1 e2=0,e3=—1%1.

__f°° z __f“‘r 2adr 5
“=J, Viz=: ") ia-r ©)

which is the léngth of a quarter of the lemniscate, and

f av-z2 2adr 6
w'= 4 z3 2 Jo V4 at—rt ©
' whlch is obviously imaginary.
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2. Consider the motion of a spherical pendulum, defined as a
particle of mass m constrained to move on the surface of a sphere

under the influence of gravity.
Using cylindrical coérdinates we take the equation of the sphere

as 2422 = a2 )
: .
Then ds? =dr?+r?d6® + d2® = —— 2+ (@® — 22)d6%. (8)

We shall use Hamilton’s pnnclple and the Lagrangian equa-
tions with q1 = 2, g2 = 6. Then

2 .

T=~2”302z?29[a2‘_1_22 2+ (az—z2)02], )]
V = mgz. (10)

The Lagrangian equations are then

- a’zz? . d/ a%

@ =2 202 — g — pr <a2 — 22> =0, 1)

d R
— =@ =20 =0. 12)
Equation (12) gives 6= a2c_} p T (13)

Using this in (11) and carrying out the indicated differentiation,
we have 20 2

a’z azz

pe>
which may bhe written as

— ) +9=0, (14)

d/ a%? d/ C,?
dt <a2 >+ dt\a? — \— 292 (15)
and integrating with respect to ¢, we have
a?2? C,?
a?® — 2+a2iz2=—2gz+c2y (16)
dz\? 2 9
or a? 7 (CZ—Zgz)(a —2°) — G~ am

This has a resemblance to the differential equation (3), §160,
satisfied by the function p(¢), since the pclynomial on the right
is cubic. To reduce to the exact form of that equation we sub-

stitute z=As+ B
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and determine A and B so that equation (17) becomes of the
form

ds)? ) .
(EIE) =483 — g15 — ¢gs. (18)
This gives, by considering the coefficients of s*and s?,
2 .
4=2%, -2, (19)
69

L
whence ¢; and g2 may be determined.

The cubic polynomial in (17) hag three real roots. For if z = 2,
the initial position of the body, the cubic is 4, since the velocity
is real, and 2y < a, since the particle is on the sphere. When
'z =00, the cubic is +; when z= — a, the cubic is —; when
2z = 2, the cubic is +; when z = a, the cubic is —. .

Hence the cubic has a root z = z; between + o and a, a root
z = 22 between a and 2o, and a root z =23 between zxand — a.
Moreover, the cubic is positive between z; and 23 and hence these
are the extreme heights of the particle.

Correspondingly, we may write (18) as

ds\2 .
<3;> =4(s — e1)(s — e2)(s — e3), (20)
— B 22— B s— B
where  a=22S, e=225 e=22
and %3 is real when s is between ez and es.
From (20) we have
bl - ds
t= f o +c. @1)
s V4(s—e1)(s— e2) (s~ es)

To determine the constant C let us measure t from the time

when s = e3. Then
® ds

—— ; (22
s V4(s —e1)(s — e2) (s — e3) &
) ® ds .
— : 23)
and if we take u [ V4(s —e1) (s — e2) (s — e3) (

we have, from (12), §160, .
C=—uw. 24
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Then u=t+w; (25)
whence s=pu) = p(t + w’), ’
and . z= Ap(t+ ') + B. (26)

When z = 23, then 8 = es, and (21) with (24) gives

l=(w+ o) — o =uw, 27

so’that the half-period w is the time that it takes the particle to
go between the extreme positions ze and z3.

EXERCISE%

1. Show that f /__(i?____._ where k > 1, can be reduced to a
k?sin? ¢
similar integral w1th k < 1.
2. Solve-the pendulum problem when the bob goes completely around

- the circle, taking the velocity at the bottom of the path as »,.
3. Solve the pendulum problem when the bob just reaches the top
of the swing.

4. A skipping-rope revolves so that each element of the string has
- constant angular velocity about an axis. Assuming that on each ele-
ment there act centrifugal force and the tension of the rope (neglecting
gravity), find the equation of the curve in which the rope swings.

5. Show that

=gl (e ) v G o]

with & < 1.
6. Show thaf
T 1\? 1/1-3\? 1(1.3~5‘2
=—|1—=(=)k2—= B~ S —— ) kB -
2[1 (2> 3<gu4> i) ¢ ]
with k < 1.
7. Show that
fl dr =sn—' (V1 =22, k).
z V(1 — 2?) (k2 + k?2?)
8. Show that

f;» dx N =sn"<-——~x Jk
0 /(1 +2)(A + k2P V1 + 22 )
9. Show that

: dz - (zb)
«/4;\/(a2—-x2)(b2—x2). a b a
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10. Show that

dr 1 /a'*’ — 22 Ja?—b?
J — ==3n ( 3 3° .
V(e = x?)(z2 — b2) @ a?—b a
11. If sis the length of the hyperbola - b_ =1 and e its eccentricity,

show that .

= g; F(¢, k) — aeE(, k) + ae tan ¢~\/1 — k2sin? ¢,

where k= 1 and tan b= ey -
e b2

12. Show that (= u) = pu).

18. Show that

S 2 —an?
sn(z+y)snz~y) = mz—sny

1—k%sn?zsny’

1—-—en2 z3

1+dn 2z x

156. Verify the series expansion of §154.

16. Find the formulas for sn (x — v), en (u — v), and dn (u —<*9).

17. Find the -ralues of sn (2 K — #), en (2 K — u), and dn (2 K — u).
2

— 22 (1 - k229 cor-

responding to two paths which together inclose one of the points 1 or =.

T de

)(z —e2) (2 —e3)

corresponding to two paths which together inclose two of the points
€1, €3, €3.

14. Show that sn?x =

18. Discuss the difference in the values of fo i va

19. Discuss the difference in the values of f ® J
4(z—e

dz

—e1)(z—e2)(z—e3)
corresponding to two paths which together inclose one of the points
€1, €2, Or €3.

20. Discuss the difference in the values of f ” Vi
z 2

A

21. Show that the equation of a geodesic on a catenoid formed by

z z
revolving the curve x = g—(e“ + ¢ @) about the axis of z is

9 ___j' b dr ,
V(2 — a?)(r? — b?)

where (r, &) are polar cosrdinates on thc (, ) plane and 9 is 4 constant
of integration. Thence show that

. b . . b . b

=, hk'::—-; 2 b ) 1= Wit k=

(Dikb>a,r s wit 5 '()1f <a r ~ vitia o
Snl:‘

(8)if h =a, r =a coth 6.
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® V3 1

1. y=ce*+ 82( z 2 3) + E(Cou x -~ 5fu &),

3 .., 1
16. y = ¢1 +(ca tresz + 7 e? +3®

18. ¥y = a1z + cox® — % x%.

17. —c,x’+—-—lxlog::——-13—6
1. y=¢a +c2 ]ogx-}»ca(log:v)‘-l-gx’

19. x=y=ce 2.
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20.z=ce % tca6?t — e  — Fsin21 - Jcos 24,

;/=--3c1e‘*”-—£-2"e'“-—l 17sm2t+—-cos2t.

—t
, 6 +52 52
1.z =¢; + cz¢' + cae~ 2t + {12 —

y=2¢c +caet —2¢307 % — % t2+x t—1,

22. y"i\/cl +\/_2‘cl “sin-1 % -+ o
28. ¥y = a1%? + ca. .

—a)2
%.y:%log(x-—a)—ﬁrg?)—-licz.

26. (y + a)? = a1z + c..
26. y = ¢1 tanh x—%ﬁ—t—%

-27. Yy = & tanh a(z + ¢2).
+ C2.

28. y = ¢1 cosh
29.y=c1xsnn2x+czzcos2;t+§e“.

80. y = 1(01 cos:c+cgsmx—ésm2:c)

81l.y= (c,:c-‘ + )e".

82. y = (1" + c,e"‘)cos z—}%sin2z,

88. y=cre™ " o2 + 1.

34. y = (c1 + ¢2 CO8 2)ec8* — 5 — 4 o8 = — coB? Z.

k=co
= (= Dk kx)2" (= 1) (k) 2k+1
8- y=a @)} “?;; GE+ 1T

= . k
86. y =ao| 1 + Rl x2?

L. =1 L

S~ -9 m-25)---[n— 2k —1)7 ),,H]

[ "iﬁ:n(n—‘:)(nﬁm) = (2k—2)?) ]

+ ax $+2

T A @%ek 1)
87. y=a :1 +:°:(» 1)+ l;i;%;&%!s;ﬂl n'cxak]

+ @ l.c -4—2?(~ 1)k 2_~5_?3_E.T(?"f = 1) egai u]
38.y= i‘xﬂura,xztg( ) Lg— (k+3)lc’

Page 274
39. y = aun(6 — 4J:+1'2)+ (1—4:&:-}-6::;2 4 73 x4,

a2 2 gf a )
42, =.. 28, .2V3%. . 1(4 — V2) Vs,
Vi 48 e 45.5V3k 48. 1(4 2) Va
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CHAPTER XIII

Page 313
£ — T 493
1~z-‘¢1(f/)ea + P2 (y)e*. 7.z=%+x¢x(y)+¢z(y).
2-z_a+l¢l(y) +¢2(y) 8. ¢(3"‘ﬂ, __z) = 0.
8. z = (y) + @=(y)e*. 9. t#(a:’+113 z)=0.
4.z=¢1(ﬂ)6’+¢2(ﬂ)8”- 10. ¢( ).._0
ob. 2 = [1y) + xPa(y)]e 2.
6. 2= ¢y (y)e" + $alw)e * — y. . @@ +y+z22+y2—22) =0.
o2, 2\ =o0. 14, (l,z’-x ):o.
12 ¢(z,z) 0 4 o(t v
18. ¢ :c?+y’.z+tan“5)=0. .
Page 314
sinx sin22 sind2 sindzx
212(1‘2+3‘4+“)
cosx cos2z cos3x
22. = —4( 1, o7 + 5z~ )
3
2{( )smx—-(% Gzzr)snnZ +(3 %Z—E)sinsx-—---],
+2(smz sm33:c+sm55:c+___>
w  2fcosx  cosd3z  cosbzx sinz sin2x L sin8z "
25. 5 - = (1, + 5+ 5 +---)—(—1————§——+—-§——--~).
X 2(cosx  cos8x cosbx
26. .._;( ¥ + 5 + 5 +...)
dsinxr sin2x  8sin3x sindzx
+(1"2+ 3 ‘4+"')'
cosx cost cos 3 x
-— + 32 —
2 2
+1r[( )smx—%—stx+(3 ;,)sin3x--1£-ain4x+~-].
28. 1_z(sxriz+sxn22::+sm33x+sm44r+_“).
4 cosx cos2zx  cosd3x , |
29.3+4(1,+ o2 + 3“‘+ )
sinz  sin22  sin8x
—dx (1 +202% , Hn +)

ao.zra_'_lzT(cols:c+c0322x+cos3x+

3
3 2« 3 2= . 3 27\ .
+4[(-1—,-—-1—-)smx+(§? —E—)sm?.a:+<§;—-—é—>sm3x+~-~].

1,2(sinx sin8xz sinbz
31.2+ﬂ,<1 g AT+ )
32._E__tt(co;;:c_‘_coss:c_*_co%fg*_.“).

4(sinz sin8z sinbzx
so.A(dne sindr sinbr, . )

® 4 /cosx cos83x , cosbx
AT I ),
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2 T2 4\ . 73 .
-1;[ )mnx—?sxn2x+(3 3—3->sm3:c-—rsm4z+~-].
36. g(_l_ cost cos 4z cosﬁx_.”). 38. & +cz

27 1-83 36 5-17
4(2sin2x 4sindzxr 6sinb6z
87 (2,_1+4,_1+62_1+ )

kx . kx
— k2t kx kz\
40.2e (al, cos = +bkvsm a) »
41. 2 (Ax cos mx + By sin mz) (C;, cos Vi? —m2y + Dpsin VkI —miy)e M ¢
42, 4(rmn0+—sm30+ sm50+ )

39. ¢; log r + c3.

3
Page 315 -
anit 9adn3t _Baine
43.£(e~'°’—sin!;—z+-§-e ot smsc +é - stné—:—’.‘....)_
1 2 . r3 . rs .
M.Z—r(rsm0+3 sin 3 8 + g sm50+---).
45.3 e~®+MIE(A, cos kz + By sin kx).
46. ZA;, sin M{z aklﬂ. 48. y = AJo(\/n:—-h) cos ni. )
47. y=AJ[2 Vk(—7)] cos Vg . 49. y=AJo(21 ,—\/"9_7‘) cos nt.
g
2M[1 a_1 1@ p,
s0. 22 [2 8_1.2% prcosg)
.. 7
+% i ga‘ Py(cos ¢) —% . 4-1—-—_g_g%Pa(cos¢)+...]'.(,.>a)

“LGM[WE’P, (cos¢)+-r_p, (cos ¢)

__l.l"_ 4((:c,u;,).;.l 1:3 2 py(cos ¢) + - - ].(r<a)

2 4a 2 4-6a
where the second term is minus when ¢ < 5 and positive when ¢ > %
CHAPTER XIV
Page 330
l.y=cx+eca. adr
8. 0—c2= .
2. T cos @ —ec2)=cr. . DI 2 f\/(r’ +E3) (13 + k2 — ¢12)
8. sin (0 — ¢3) =¢1 cot ¢ v, r\/mdB =eyV1+773(r) dr.
8. Cycloid.’ 9.g(x—c3) =aV2g9(y +a) —cd. 10. Caten?.ry.
Page 331 2 xL
11. Circle. 12. Circle. 18. Catenary. 20, ——-
y V3 gl
. CHAPTER XV
Page 364
( < ma+2 2 ) »89. w(cot.amw — cot b1r)
386. —(1 —
2 a4 2
87. L.¢ Vi + o 2™
——— e 08 - sin
2’(c V2 V2 )

‘n" 1
o8, sin ar 41. \/2
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Addition formulas, elliptic functions,
372
Amplitude, function, 368
Arec, element of, 106, 125, 128
infinitesimal, 23
Area, curved surface, 187
element of, 126
line integral, 177
vector, 209
Argument of complex number, 334
®
Bernoulli’s equation, 221
Bessel functions, 275, 360 -
Bessel’s equation, 275.
Beta function, 166
Binormal, 119

Calculus of variations, 317
Cauchy’s theorem, 352
Characteristics, 293
Circle of convergence, 356
Circulation, 200
Clairaut’s equation, 227
Continuity, deflned, 2
equation of, 195
uniform, 4
Convergence, absolute, 39
circle of, 355
comparigon test for, 40
conditional, 58
of integrals, 147, 151
ratio test for, 41
region of, 42
of series, 38 .
uniform, 45, 149, 150, 152
Cooérdinates, curvilinear, 124
cylindriesl, 129
generalized, 329
polar, 130
Cosimes, direction, 106

Curl, 212

Cugvatbre, 121

Curve, equations of, 118
length of, 28, 107
vector equation of, 208

De Moivre’s theorem, 56
Del 211
Derivative, of a complex function, 345
defined, 5
directional, 74
partial, 66
Determinant, functional, 99
Differential, exact, 81, 185
of function of one variable, 28
of function of several variables,
78
higher, 29, 84
Differential equation, Bessel’s, 275
complete, 2563
first degree, 21y
first order, 216
higher degree, 225
higher order, 252
Laplace’s, 301, 306
Legendre’s, 268
linear, 220, 258
partial, 292
reduced, 253
second order, 264
simultaneous, 243, 268
Differentiation, of definite integral,
141, 148
of elliptic functions, 371
partial, 65
Direction cosines, 106
Direction of a line, 108
Dirichlet’s integrals, 1Q7
Divergence, 211
Duhamel’s theorem, 23

396
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Element, of are, 106, 125, 128
of area, 126 .
of volume, 129, 159

Envelope, 229

Euler’s constant, 171

Euler’s theorem, 73

Evolute, 233

Expansion, asymptotic, 363
of elliptic functions, 371

Factor, integrating, 222, 238
Fluid, flow of, 176, 191, 212
Force, conservative, 84
Forms, indeterminate, 15, 16, 18
Fourier series, 295
Function, 1
analytic, 347
Bessel, 275, 360
Beta, 166
complementary, 254, 259
of a complex variable, 332,
344
composite, 7, 69
conjugate, 347
defined by power series, 45
dominant, 57, 87
elliptic, 366, 367
exponential, 53, 339
Gamma, 164
harmonic, 810
homogeneous, 73
hyperbolic, 55, 341
implicit, 91
inverse, 343
logarithmic, 342
regular, 355
of several variables, 65
trigonometric, 53, 339
vector, 209

Gamma functions, 164
Geodesics, 323, 327
Gradient, 77, 210

Green’s theorem, 181, 192

Hamilton’s principle, 328
Heat, flow of, 303
Helix, 133

Imaginary, conjugate, 333
pure, 332
Indicatrix, 114, 115
Infinitesimal, 19, 22
Integral, of a complex function,
351 .
definite, 134
elliptic, 365, 376, 879, 381
line, 174
multiple, 156
particular, 254, 261
surface, 190
Integrand, infinite, 151
Integration under the integral sign,
145, 148
Interval, 2
Involute, 235

Jacobians, 99

Lagrange’s equations, 329
Laplace’s equation, 301, 306
Legendre’s associated nolynomial, 272
Legendre’s equation, 268
Legendre’s integrals, 367
Legendre’s polynomials, 270
Lemniscate, 382
Length of curve, 23, 107
L’Hospital’s rule, 16
Limit, infinite, 146
Line integrals, 174
Line, contour, 76

straight, 108 -
Loxodrome, 133

Méclaurin’s series, 13

Maxima and minima, 116

Mean, theorem of, 8

Mercator’s projection, 133, 351

Modulus, of complex number, 333
of elliptie function, 367

Normal, to plane, 111

; prineipal, 120

“ to surface, 110, 127
Number, complex, 332

QOperations on scries, 46, 51
Operator, 257



Operator del, 211

Order of infinitesimals, 19
Orthogonality, 107, 126
Oscillation of a function, 5
Osgood’s theorem, 23

Parallelism, eondition for, 206

Part, principal, 20

Path of integration, 183

Pendulum, 330, 369
spherical, 383

Periods, 373

Perpendicularity, condition for, 107,

126, 205
Plane, 110
osculating, 119
Point, elliptice, 114
hyperbolic, 115
parabolic, 116
singular, 231
Pole, 355 :
Polynomial, Legendre’s, 27

Legendre’s associated, 272

Potential, 199, 308

Power of complex number, 335
Projection, Mercator’s, 133, 351

stereographie, 133, 351

Region of convergence, 42

Remainder, Taylor’s series, 10
Representation, conformal, 348

Residue, 355 »
Rolle’s theorem, 7

Roots, of Bessel functions, 279

of complex numbers, 835
square, 337

INDEX

Scalar product, 205

Series, Fourier, 295
operations on, 46, 61
power, 38

Simpson’s rule, 139

Solution, singular, 232

Stokes’s tif®orem, 197

‘gurfgce integrals, 190

Surfaces, 109, 112

afea of, 187

of revolution, 133
Systems, orthogonal, 348

Tangent line, 119
Tangent plane, 111, 112
Taylor's series, 10, 48, 358
Torsion, 122 )
Trajectory, 236

Triangle, infinitesimal, 26

Value, absolute, 338
Variable, complex, 332
Variation, constrajned, 324
first, 318
Variation of eonstants, 256
Variations, calculus of, 317
Vector, 203
Vector function, 209
Vector product, 206
Velocity potential, 200
Volume, element of, 129, 159
Vortex motion, 200, 212

Weierstrass, 5

897

Weéierstrass’s elliptic function, 381

Work, 176, 200
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